Skip to main content
Log in

Effects of Localized Hydrophilic Mannitol and Hydrophobic Nelfinavir Administration Targeted to Olfactory Epithelium on Brain Distribution

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Many nasally applied compounds gain access to the brain and the central nervous system (CNS) with varying degree. Direct nose-to-brain access is believed to be achieved through nervous connections which travel from the CNS across the cribriform plate into the olfactory region of the nasal cavity. However, current delivery strategies are not targeted to preferentially deposit drugs to the olfactory at cribriform. Therefore, we have developed a pressurized olfactory delivery (POD) device which consistently and non-invasively deposited a majority of drug to the olfactory region of the nasal cavity in rats. Using both a hydrophobic drug, mannitol (log P = −3.1), and a hydrophobic drug, nelfinavir (log P = 6.0), and POD device, we compared brain and blood levels after nasal deposition primarily on the olfactory region with POD or nose drops which deposited primarily on the respiratory region in rats. POD administration of mannitol in rats provided a 3.6-fold (p < 0.05) increase in cortex-to-blood ratio, compared to respiratory epithelium deposition with nose drop. Administration of nelfinavir provided a 13.6-fold (p < 0.05) advantage in cortex-to-blood ratio with POD administration, compared to nose drops. These results suggest that increasing the fraction of drug deposited on the olfactory region of the nasal cavity will result in increased direct nose-to-brain transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Newman SP, Pitcairn GR, Dalby RN. Drug delivery to the nasal cavity: in vitro and in vivo assessment. Crit Rev Ther Drug Carrier Syst. 2004;21(1):21–66.

    Article  PubMed  Google Scholar 

  2. Dhuria SV, Hanson LR, Frey 2nd WH. Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci. 2010;99(4):1654–73.

    PubMed  CAS  Google Scholar 

  3. Illum L. Is nose-to-brain transport of drugs in man a reality? J Pharm Pharmacol. 2004;56(1):3–17.

    Article  PubMed  CAS  Google Scholar 

  4. Hilger P. Applied anatomy and physiology of the nose. In: Adams GL, LRBaPAH, editors. Boies’s fundamentals of otolaryngology. Philadelphia: W.B. Saunders; 1989. p. 177–95.

    Google Scholar 

  5. Jackson RT, Tigges J, Arnold W. Subarachnoid space of the CNS, nasal mucosa, and lymphatic system. Arch Otolaryngol. 1979;105(4):180–4.

    PubMed  CAS  Google Scholar 

  6. Thorne RG, Frey 2nd WH. Delivery of neurotrophic factors to the central nervous system: pharmacokinetic considerations. Clin Pharmacokinet. 2001;40(12):907–46.

    Article  PubMed  CAS  Google Scholar 

  7. Ross TM, Martinez PM, Renner JC, Thorne RG, Hanson LR, Frey 2nd WH. Intranasal administration of interferon beta bypasses the blood–brain barrier to target the central nervous system and cervical lymph nodes: a non-invasive treatment strategy for multiple sclerosis. J Neuroimmunol. 2004;151(1–2):66–77.

    Article  PubMed  CAS  Google Scholar 

  8. Dahlin M, Jansson B, Bjork E. Levels of dopamine in blood and brain following nasal administration to rats. Eur J Pharm Sci. 2001;14(1):75–80.

    Article  PubMed  CAS  Google Scholar 

  9. Dahlin M, Bergman U, Jansson B, Bjork E, Brittebo E. Transfer of dopamine in the olfactory pathway following nasal administration in mice. Pharm Res. 2000;17(6):737–42.

    Article  PubMed  CAS  Google Scholar 

  10. Jansson B, Bjork E. Visualization of in vivo olfactory uptake and transfer using fluorescein dextran. J Drug Target. 2002;10(5):379–86.

    Article  PubMed  CAS  Google Scholar 

  11. Westin U, Piras E, Jansson B, Bergstrom U, Dahlin M, Brittebo E, et al. Transfer of morphine along the olfactory pathway to the central nervous system after nasal administration to rodents. Eur J Pharm Sci. 2005;24(5):565–73.

    Article  PubMed  CAS  Google Scholar 

  12. Padowski JM, Pollack GM. Examination of the ability of the nasal administration route to confer a brain exposure advantage for three chemical inhibitors of P-glycoprotein. J Pharm Sci. 2010;99(7):3226–33.

    PubMed  CAS  Google Scholar 

  13. Merkus FW, van den Berg MP. Can nasal drug delivery bypass the blood–brain barrier?: questioning the direct transport theory. Drugs R D. 2007;8(3):133–44.

    Article  PubMed  CAS  Google Scholar 

  14. Morrison EE, Costanzo RM. Morphology of the human olfactory epithelium. J Comp Neurol. 1990;297(1):1–13.

    Article  PubMed  CAS  Google Scholar 

  15. Foo MY, Cheng YS, Su WC, Donovan MD. The influence of spray properties on intranasal deposition. J Aerosol Med. 2007;20(4):495–508. Winter.

    Article  PubMed  CAS  Google Scholar 

  16. Illum L. Transport of drugs from the nasal cavity to the central nervous system. Eur J Pharm Sci. 2000;11(1):1–18.

    Article  PubMed  CAS  Google Scholar 

  17. Gross EA, Swenberg JA, Fields S, Popp JA. Comparative morphometry of the nasal cavity in rats and mice. J Anat. 1982;135(Pt 1):83–8.

    PubMed  CAS  Google Scholar 

  18. Thorne RG, Emory CR, Ala TA, Frey 2nd WH. Quantitative analysis of the olfactory pathway for drug delivery to the brain. Brain Res. 1995;692(1–2):278–82.

    Article  PubMed  CAS  Google Scholar 

  19. Liu XF, Fawcett JR, Thorne RG, DeFor TA, Frey 2nd WH. Intranasal administration of insulin-like growth factor-I bypasses the blood–brain barrier and protects against focal cerebral ischemic damage. J Neurol Sci. 2001;187(1–2):91–7.

    Article  PubMed  CAS  Google Scholar 

  20. Hanson LR, Roeytenberg A, Martinez PM, Coppes VG, Sweet DC, Rao RJ, et al. Intranasal deferoxamine provides increased brain exposure and significant protection in rat ischemic stroke. J Pharmacol Exp Ther. 2009;330(3):679–86.

    Article  PubMed  CAS  Google Scholar 

  21. Thorne RG, Pronk GJ, Padmanabhan V, Frey 2nd WH. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience. 2004;127(2):481–96.

    Article  PubMed  CAS  Google Scholar 

  22. Van den Berg MP, Merkus P, Romeijn SG, Verhoef JC, Merkus FW. Hydroxocobalamin uptake into the cerebrospinal fluid after nasal and intravenous delivery in rats and humans. J Drug Target. 2003;11(6):325–31.

    Article  PubMed  Google Scholar 

  23. Charlton ST, Davis SS, Illum L. Nasal administration of an angiotensin antagonist in the rat model: effect of bioadhesive formulations on the distribution of drugs to the systemic and central nervous systems. Int J Pharm. 2007;338(1–2):94–103.

    Article  PubMed  CAS  Google Scholar 

  24. Young JT. Histopathologic examination of the rat nasal cavity. Fundam Appl Toxicol. 1981;1(4):309–12. Jul–Aug.

    Article  PubMed  CAS  Google Scholar 

  25. Chow HS, Chen Z, Matsuura GT. Direct transport of cocaine from the nasal cavity to the brain following intranasal cocaine administration in rats. J Pharm Sci. 1999;88(8):754–8.

    Article  PubMed  CAS  Google Scholar 

  26. Chow HH, Anavy N, Villalobos A. Direct nose-brain transport of benzoylecgonine following intranasal administration in rats. J Pharm Sci. 2001;90(11):1729–35.

    Article  PubMed  CAS  Google Scholar 

  27. Charlton ST, Whetstone J, Fayinka ST, Read KD, Illum L, Davis SS. Evaluation of direct transport pathways of glycine receptor antagonists and an angiotensin antagonist from the nasal cavity to the central nervous system in the rat model. Pharm Res. 2008;25(7):1531–43.

    Article  PubMed  CAS  Google Scholar 

  28. Cloyd JC, Snyder BD, Cleeremans B, Bundlie SR, Blomquist CH, Lakatua DJ. Mannitol pharmacokinetics and serum osmolality in dogs and humans. J Pharmacol Exp Ther. 1986;236(2):301–6.

    PubMed  CAS  Google Scholar 

  29. Miki K, Butler R, Moore D, Davidson G. Rapid and simultaneous quantification of rhamnose, mannitol, and lactulose in urine by HPLC for estimating intestinal permeability in pediatric practice. Clin Chem. 1996;42(1):71–5.

    PubMed  CAS  Google Scholar 

  30. Williams TF, Hollander Jr W, Strauss MB, Rossmeisl EC, Mc LR. Mechanism of increased renal sodium excretion following mannitol infusion in man. J Clin Invest. 1955;34(4):595–601.

    Article  PubMed  CAS  Google Scholar 

  31. Sisson WB, Oldendorf WH. Brain distribution spaces of mannitol-3H, inulin-14C, and dextran-14C in the rat. Am J Physiol. 1971;221(1):214–7.

    PubMed  CAS  Google Scholar 

  32. Kaddoumi A, Choi SU, Kinman L, Whittington D, Tsai CC, Ho RJ, et al. Inhibition of P-glycoprotein activity at the primate blood–brain barrier increases the distribution of nelfinavir into the brain but not into the cerebrospinal fluid. Drug Metab Dispos. 2007;35(9):1459–62.

    Article  PubMed  CAS  Google Scholar 

  33. Minagar A, Commins D, Alexander JS, Hoque R, Chiappelli F, Singer EJ, et al. NeuroAIDS: characteristics and diagnosis of the neurological complications of AIDS. Mol Diagn Ther. 2008;12(1):25–43.

    PubMed  CAS  Google Scholar 

  34. Hanson LR, Frey 2nd WH. Strategies for intranasal delivery of therapeutics for the prevention and treatment of neuroAIDS. J Neuroimmune Pharmacol. 2007;2(1):81–6.

    Article  PubMed  Google Scholar 

  35. Jarvis B, Faulds D, Nelfinavir. A review of its therapeutic efficacy in HIV infection. Drugs. 1998;56(1):147–67.

    Article  PubMed  CAS  Google Scholar 

  36. Kandimalla KK, Donovan MD. Localization and differential activity of P-glycoprotein in the bovine olfactory and nasal respiratory mucosae. Pharm Res. 2005;22(7):1121–8.

    Article  PubMed  CAS  Google Scholar 

  37. Graff CL, Pollack GM. P-Glycoprotein attenuates brain uptake of substrates after nasal instillation. Pharm Res. 2003;20(8):1225–30.

    Article  PubMed  CAS  Google Scholar 

  38. Graff CL, Pollack GM. Functional evidence for P-glycoprotein at the nose–brain barrier. Pharm Res. 2005;22(1):86–93.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported in part by NIH grants AI 077390 and MH086351, and University of Washington Technology Innovation grant TGIF-1001. RJYH is also supported by Milo Gibaldi Endowment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodney J. Y. Ho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoekman, J.D., Ho, R.J.Y. Effects of Localized Hydrophilic Mannitol and Hydrophobic Nelfinavir Administration Targeted to Olfactory Epithelium on Brain Distribution. AAPS PharmSciTech 12, 534–543 (2011). https://doi.org/10.1208/s12249-011-9614-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-011-9614-1

Key words

Navigation