Skip to main content

Advertisement

Log in

Poly (ɛ-Caprolactone) Nanoparticles with pH-Responsive Behavior Improved the In Vitro Antitumor Activity of Methotrexate

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

A promising approach to achieve a more efficient antitumor therapy is the conjugation of the active molecule to a nanostructured delivery system. Therefore, the main objective of this research was to prepare nanoparticles (NPs), with the polymer poly (ε-caprolactone) (PCL), as a carrier for the antitumor drug methotrexate (MTX). A pH-responsive behavior was obtained through conjugation of the amino acid-based amphiphile, 77KL, to the NP matrix. The NPs showed mean hydrodynamic diameter and drug entrapment efficiency of 178.5 nm and 20.52%, respectively. Owing to its pH-sensitivity, the PCL-NPs showed membrane-lytic behavior upon reducing the pH value of surrounding media to 5.4, which is characteristic of the endosomal compartments. The in vitro antitumor assays demonstrated that MTX-loaded PCL-NPs have higher antiproliferative activity than free drug in MCF-7 cells and, to a lesser extent, in HepG2 cells. This same behavior was also achieved at mildly acidic conditions, characteristic of the tumor microenvironment. Altogether, the results evidenced the pH-responsive properties of the designed NPs, as well as the higher in vitro cytotoxicity compared to free MTX, representing thus a promising alternative for the antitumor therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nussbaumer S, Bonnabry P, Veuthey JL, Fleury-Souverain S. Analysis of anticancer drugs: a review. Talanta. 2011;85(5):2265–89.

    Article  CAS  PubMed  Google Scholar 

  2. Rubino FM. Separation methods for methotrexate, its structural analogues and metabolites. J Chromatogr B Biomed Sci Appl. 2001;764(1–2):217–54.

    Article  CAS  PubMed  Google Scholar 

  3. Jain A, Sharma G, Kushwah V, Garg NK, Kesharwani P, Ghoshal G, et al. Methotrexate and beta-carotene loaded- lipid polymer hybrid nanoparticles: a preclinical study for breast cancer. Nanomedicine. 2017;12(15):1851–72.

    Article  CAS  PubMed  Google Scholar 

  4. Gorjikhah F, Azizi Jalalian F, Salehi R, Panahi Y, Hasanzadeh A, Alizadeh E, et al. Preparation and characterization of PLGA-β-CD polymeric nanoparticles containing methotrexate and evaluation of their effects on T47D cell line. Artif Cells Nanomed Biotechnol. 2016;1401:1–9.

    Google Scholar 

  5. Jain DS, Bajaj AN, Athawale RB, Shikhande SS, Pandey A, Goel PN, et al. Thermosensitive PLA based nanodispersion for targeting brain tumor via intranasal route. Mater Sci Eng C. 2016;63:411–21.

    Article  CAS  Google Scholar 

  6. Musmade KP, Deshpande PB, Musmade PB, Maliyakkal MN, Kumar AR, Reddy MS, et al. Methotrexate-loaded biodegradable nanoparticles: preparation, characterization and evaluation of its cytotoxic potential against U-343 MGa human neuronal glioblastoma cells. Bull Mater Sci. 2014;37(4):945–51.

    Article  CAS  Google Scholar 

  7. Jain A, Jain A, Garg NK, Tyagi RK, Singh B, Katare OP, et al. Surface engineered polymeric nanocarriers mediate the delivery of transferrin–methotrexate conjugates for an improved understanding of brain cancer. Acta Biomater. 2015;24:140–51.

    Article  CAS  PubMed  Google Scholar 

  8. Yurgel VC, Oliveira CP, Begnini KR, Schultze E, Thurow HS, Leon PMM, et al. Methotrexate diethyl ester-loaded lipid-core nanocapsules in aqueous solution increased antineoplastic effects in resistant breast cancer cell line. Int J Nanomedicine. 2014;9(1):1583–91.

    PubMed  PubMed Central  Google Scholar 

  9. Bazban-Shotorbani S, Hasani-Sadrabadi MM, Karkhaneh A, Serpooshan V, Jacob KI, Moshaverinia A, et al. Revisiting structure-property relationship of pH-responsive polymers for drug delivery applications. J Control Release. 2017;253:46–63.

    Article  CAS  PubMed  Google Scholar 

  10. Sáez-Fernández E, Ruiz M, Arias J. Drug delivery systems based on poly (ε-caprolactone ) for cancer treatment. ARS Pharm. 2009;50(2):83–96.

    Google Scholar 

  11. Xiao Y, Yuan M, Zhang J, Yan J, Lang M. Functional poly(ε-caprolactone) based materials: preparation, self-assembly and application in drug delivery. Curr Top Med Chem. 2014;14(6):781–818.

    Article  CAS  PubMed  Google Scholar 

  12. Chawla JS, Amiji MM. Biodegradable poly(ε-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. Int J Pharm. 2002;249(1–2):127–38.

    Article  CAS  PubMed  Google Scholar 

  13. Kabanov AV, Batrakova EV, Alakhov VY. Pluronic block copolymers for overcoming drug resistance in cancer. Adv Drug Deliv Rev. 2002;54(5):759–79.

    Article  CAS  PubMed  Google Scholar 

  14. Batrakova EV, Kabanov AV. Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control Release. 2008;130(2):98–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nogueira DR, Mitjans M, Infante MR, Vinardell MP. The role of counterions in the membrane-disruptive properties of pH-sensitive lysine-based surfactants. Acta Biomater. 2011;7(7):2846–56.

    Article  CAS  PubMed  Google Scholar 

  16. Nogueira DR, Mitjans M, Infante MR, Vinardell MP. Comparative sensitivity of tumor and non-tumor cell lines as a reliable approach for in vitro cytotoxicity screening of lysine-based surfactants with potential pharmaceutical applications. Int J Pharm. 2011;420(1):51–8.

    Article  CAS  PubMed  Google Scholar 

  17. Nogueira DR, Tavano L, Mitjans M, Pérez L, Infante MR, Vinardell MP. In vitro antitumor activity of methotrexate via pH-sensitive chitosan nanoparticles. Biomaterials. 2013;34(11):2758–72.

    Article  CAS  PubMed  Google Scholar 

  18. Vives MA, Infante MR, Garcia E, Selve C, Maugras M, Vinardell MP. Erythrocyte hemolysis and shape changes induced by new lysine-derivate surfactants. Chem Biol Interact. 1999;118(1):1–18.

    Article  CAS  PubMed  Google Scholar 

  19. Sánchez L, Mitjans M, Infante MR, García MT, Manresa MA, Vinardell MP. The biological properties of lysine-derived surfactants. Amino Acids. 2007;32(1):133–6.

    Article  PubMed  CAS  Google Scholar 

  20. Chung N-O, Lee MK, Lee J. Mechanism of freeze-drying drug nanosuspensions. Int J Pharm. 2012;437(1–2):42–50.

    Article  CAS  PubMed  Google Scholar 

  21. Peppas NA, Sahlin JJ. A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int J Pharm. 1989;57(2):169–72.

    Article  CAS  Google Scholar 

  22. Scheeren LE, Nogueira DR, Macedo LB, Vinardell MP, Mitjans M, Infante MR, et al. PEGylated and poloxamer-modified chitosan nanoparticles incorporating a lysine-based surfactant for pH-triggered doxorubicin release. Colloids Surf B Biointerf. 2016;138:117–27.

    Article  CAS  Google Scholar 

  23. Ritger PL, Peppas NA. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release. 1987;5(1):23–36.

    Article  CAS  Google Scholar 

  24. Nogueira DR, del Carmen MM, Mitjans M, Pérez L, Ramos D, de Lapuente J, et al. Lysine-based surfactants in nanovesicle formulations: the role of cationic charge position and hydrophobicity in in vitro cytotoxicity and intracellular delivery. Nanotoxicology. 2014;8(4):404–21.

    Article  CAS  PubMed  Google Scholar 

  25. Ritger PL, Peppas NA. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release. 1987;5(1):37–42.

    Article  CAS  Google Scholar 

  26. Kuznetsova NR, Sevrin C, Lespineux D, Bovin NV, Vodovozova EL, Mészáros T, et al. Hemocompatibility of liposomes loaded with lipophilic prodrugs of methotrexate and melphalan in the lipid bilayer. J Control Release. 2012;160(2):394–400.

    Article  CAS  PubMed  Google Scholar 

  27. Liu J, Huang Y, Kumar A, Tan A, Jin S, Mozhi A, et al. pH-Sensitive nano-systems for drug delivery in cancer therapy. Biotechnol Adv. 2014;32(4):693–710.

    Article  CAS  PubMed  Google Scholar 

  28. Fessi H, Devissaguet J-P, Puisieux F, Thies C. Procédé de préparation de systèmes coiloidaux dispersibles d’une substance, sous forme du nanoparticules. French patent; 0275796 A1, 1988. p. 988.

  29. Chen AZ, Wang GY, Wang SB, Li L, Liu YG, Zhao C. Formation of methotrexate-PLLA-PEG-PLLA composite microspheres by microencapsulation through a process of suspension-enhanced dispersion by supercritical CO2. Int J Nanomedicine. 2012;7:3013–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen AZ, Li L, Wang SB, Zhao C, Liu YG, Wang GY, et al. Nanonization of methotrexate by solution-enhanced dispersion by supercritical CO 2. J Supercrit Fluids. 2012;67:7–13.

    Article  CAS  Google Scholar 

  31. Souto EB, Severino P, Santana MHA. Preparação de nanopartículas poliméricas a partir de polímeros pré-formados: parte II. Polímeros. 2012;22(1):101–6.

    Article  CAS  Google Scholar 

  32. Govender T, Stolnik S, Garnett MC, Illum L, Davis SS. PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J Control Release. 1999;57(2):171–85.

    Article  CAS  PubMed  Google Scholar 

  33. Yan F, Zhang C, Zheng Y, Mei L, Tang L, Song C, et al. The effect of poloxamer 188 on nanoparticle morphology, size, cancer cell uptake, and cytotoxicity. Nanomed Nanotechnol Biol Med. 2010;6(1):170–8.

    Article  CAS  Google Scholar 

  34. Berg JM, Romoser A, Banerjee N, Zebda R, Sayes CM. The relationship between pH and zeta potential of ~ 30 nm metal oxide nanoparticle suspensions relevant to in vitro toxicological evaluations. Nanotoxicology. 2009;3(4):276–83.

    Article  CAS  Google Scholar 

  35. Bhattacharjee S. DLS and zeta potential - what they are and what they are not? J Control Release. 2016;235:337–51.

    Article  CAS  PubMed  Google Scholar 

  36. Boechat AL, de Oliveira CP, Tarragô AM, da Costa AG, Malheiro A, Guterres SS, et al. Methotrexate-loaded lipid-core nanocapsules are highly effective in the control of inflammation in synovial cells and a chronic arthritis model. Int J Nanomedicine. 2015;10:6603–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Oliveira CP, Venturini CG, Donida B, Poletto FS, Guterres SS, Pohlmann AR. An algorithm to determine the mechanism of drug distribution in lipid-core nanocapsule formulations. Soft Matter. 2013;9(4):1141–50.

    Article  CAS  Google Scholar 

  38. Fonte P, Reis S, Sarmento B. Facts and evidences on the lyophilization of polymeric nanoparticles for drug delivery. J Control Release. 2016;225:75–86.

    Article  CAS  PubMed  Google Scholar 

  39. Pinto Reis C, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed Nanotechnol Biol Med. 2006;2(1):8–21.

    Article  CAS  Google Scholar 

  40. Morabito K, Shapley NC, Steeley KG, Tripathi A. Review of sunscreen and the emergence of non-conventional absorbers and their applications in ultraviolet protection. Int J Cosmet Sci. 2011;33(5):385–90.

    Article  CAS  PubMed  Google Scholar 

  41. Dash TK, Konkimalla VB. Poly-є-caprolactone based formulations for drug delivery and tissue engineering: a review. J Control Release. 2012;158(1):15–33.

    Article  CAS  PubMed  Google Scholar 

  42. Glantz MJ, Cole BF, Recht L, Akerley W, Mills P, Saris S, et al. High-dose intravenous methotrexate for patients with nonleukemic leptomeningeal cancer: is intrathecal chemotherapy necessary? J Clin Oncol. 1998;16(4):1561–7.

    Article  CAS  PubMed  Google Scholar 

  43. Nogueira DR, Scheeren LE, Macedo LB, Marcolino AIP, Pilar Vinardell M, Mitjans M, et al. Inclusion of a pH-responsive amino acid-based amphiphile in methotrexate-loaded chitosan nanoparticles as a delivery strategy in cancer therapy. Amino Acids. 2016;48(1):157–68.

    Article  CAS  PubMed  Google Scholar 

  44. Sohaebuddin SK, Thevenot PT, Baker D, Eaton JW, Tang L. Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part Fibre Toxicol. 2010;7(1):22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Tavano L, Muzzalupo R, Mauro L, Pellegrino M, Andò S, Picci N. Transferrin-conjugated pluronic niosomes as a new drug delivery system for anticancer therapy. Langmuir. 2013;29(41):12638–46.

    Article  CAS  PubMed  Google Scholar 

  46. Minaei A, Sabzichi M, Ramezani F, Hamishehkar H, Samadi N. Co-delivery with nano-quercetin enhances doxorubicin-mediated cytotoxicity against MCF-7 cells. Mol Biol Rep. 2016;43(2):99–105.

    Article  CAS  PubMed  Google Scholar 

  47. Hartung T. Food for thought ... on alternative methods for chemical safety testing. ALTEX. 2010;27(1):3–14.

    Article  PubMed  Google Scholar 

  48. Genestier L, Paillot R, Quemeneur L, Izeradjene K, Revillard J-P. Mechanisms of action of methotrexate. Immunopharmacology. 2000;47(2–3):247–57.

    Article  CAS  PubMed  Google Scholar 

  49. Valério A, Conti DS, Araújo PHH, Sayer C, da Rocha SRP. Synthesis of PEG-PCL-based polyurethane nanoparticles by miniemulsion polymerization. Colloids Surf B Biointerf. 2015;135:35–41.

    Article  CAS  Google Scholar 

  50. Zhao J, Gou M, Dai M, Li X, Cao M, Huang M, et al. Preparation, characterization, and in vitro cytotoxicity study of cationic PCL-pluronic-PCL (PCFC) nanoparticles for gene delivery. J Biomed Mater Res A. 2009;90(2):506–13.

    Article  PubMed  CAS  Google Scholar 

  51. Surnar B, Sharma K, Jayakannan M. Core–shell polymer nanoparticles for prevention of GSH drug detoxification and cisplatin delivery to breast cancer cells. Nanoscale. 2015;7(42):17964–79.

    Article  CAS  PubMed  Google Scholar 

  52. Mendes LP, Delgado JMF, Costa ADA, Vieira MS, Benfica PL, Lima EM, et al. Biodegradable nanoparticles designed for drug delivery: the number of nanoparticles impacts on cytotoxicity. Toxicol in Vitro. 2015;29(6):1268–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by Grants 447548/2014-0 and 401069/2014-1 of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq - Brazil) and 2293-2551/14-0 of Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS - Brazil). Letícia B. Macedo and Daniele R. Nogueira-Librelotto acknowledge Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES - Brazil) and CNPq - Brazil for the Master’s and Postdoctoral fellowships, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clarice Madalena Bueno Rolim.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macedo, L.B., Nogueira-Librelotto, D.R., de Vargas, J. et al. Poly (ɛ-Caprolactone) Nanoparticles with pH-Responsive Behavior Improved the In Vitro Antitumor Activity of Methotrexate. AAPS PharmSciTech 20, 165 (2019). https://doi.org/10.1208/s12249-019-1372-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1372-5

KEY WORDS

Navigation