Skip to main content

Advertisement

Log in

Nanoemulsions as vehicles for transdermal delivery of aceclofenac

  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The aim of the present study was to investigate the potential of a nanoemulsion formulation for transdermal delivery of aceclofenac. Various oil-in-water nanoemulsions were prepared by the spontaneous emulsification method. The nanoemulsion area was identified by constructing pseudoternary phase diagrams. The prepared nanoemulsions were subjected to different thermodynamic stability tests. The nanoemulsion formulations that passed thermodynamic stability tests were characterized for viscosity, droplet size, transmission electron microscopy, and refractive index. Transdermal permeation of aceclofenac through rat abdominal skin was determined by Franz diffusion cell. The in vitro skin permeation profile of optimized formulations was compared with that of aceclofenac conventional gel and nanoemulsion gel. A significant increase in permeability parameters such as steady-state flux (Jss), permeability coefficient (Kp), and enhancement ratio (Er) was observed in optimized nanoemulsion formulation F1, which consisted of 2% wt/wt of aceclofenac, 10% wt/wt of Labrafil®, 5% wt/wt of Triacetin®, 35.33% wt/wt of Tween 80®, 17.66% wt/wt of Transcutol P®, and 32% wt/wt of distilled water. The anti-inflammatory effects of formulation F1 showed a significant increase (P<.05) in percent inhibition value after 24 hours when compared with aceclofenac conventional gel and nanoemulsion gel on carrageenan-induced paw edema in rats. These results suggested that nanoemulsions are potential vehicles for improved transdermal delivery of aceclofenac.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Escribano E, Calpena AC, Queralt J, Obach R, Domenech J. Assessment of diclofenac permeation with different formulations: anti-inflammatory study of a selected formula.Eur J Pharm Sci. 2003;19:203–210.

    Article  PubMed  CAS  Google Scholar 

  2. Yamazaki R, Kawai S, Mastsuzaki T, et al. Aceclofenac blocks prostaglandin E2 production following its intracellular conversion into cyclooxygenase inhibitors.Eur J Pharmacol. 1997;329:181–187.

    PubMed  CAS  Google Scholar 

  3. Gonzalez E, Cruz C, Nicolas R, Egido J, Herrero-Beaumont G. Long-term effects of nonsteroidal anti-inflammatory drugs on the production of cytokines and other inflammatory mediators by blood cells of patients with osteoarthritis.Agents Actions. 1994;41:171–178.

    Article  PubMed  CAS  Google Scholar 

  4. Yang JH, Kim Y, Kim KM. Preparation and evaluation of aceclofenac microemulsion for transdermal delivery system.Arch Pharm Res. 2002;25:534–540.

    Article  PubMed  CAS  Google Scholar 

  5. Walters KA. Penetration enhancers and their use in transdermal therapeutic systems. In: Hadgraft J, Guy RH, eds.Transdermal Drug Delivery, Developmental Issues and Research Initiatives. New York, NY: Marcel Dekker; 1989:197–246.

    Google Scholar 

  6. Shafiq S, Faiyaz S, Sushma T, Ahmad FJ, Khar RK, Ali M. Design and development of oral oil in water ramipril nanoemulsion formulation:in vitro andin vivo evaluation.J Biomed Nanotech. 2007;3:28–44.

    Article  CAS  Google Scholar 

  7. Shafiq S, Faiyaz S, Sushma T, Ahmad FJ, Khar RK, Ali M. Development and bioavailability assessment of ramipril nanoemulsion formulation.Eur J Pharm Biopharm. 2007;66:227–243.

    Article  PubMed  CAS  Google Scholar 

  8. Osborne DW, Ward AJ, Neil KJ. Microemulsions as topical delivery vehicles: in-vitro transdermal studies of a model hydrophilic drug.J Pharm Pharmacol. 1991;43:450–454.

    PubMed  CAS  Google Scholar 

  9. Trotta M, Pattarino F, Gasco MR. Influence of counter ions on the skin permeation of methotrexate from water-oil microemulsions.Pharm Acta Helv. 1996;71:135–140.

    Article  PubMed  Google Scholar 

  10. Delgado-Charro MB, Iglesias-Vilas G, Blanco-Mendez J, Lopez-Quintela MJ, Marty MA, Guy JP. Delivery of a hydrophilic solute through the skin from novel microemulsion systems.Eur J Pharm Biopharm. 1997;43:37–42.

    Article  Google Scholar 

  11. Dreher F, Walde P, Walter P, Wehrli E. Interaction of a lecithin microemulsion gel with human stratum corneum and its effect on transdermal transport.J Control Rel. 1997;45:131–140.

    Article  CAS  Google Scholar 

  12. Schmalfus U, Neubart R, Wohlrab W. Modification of drug penetration into human skin using microemulsions.J Control Rel. 1997;46:279–285.

    Article  Google Scholar 

  13. Kreilgaard M, Pedersen EJ, Jaroszewski JW. NMR characterization and transdermal drug delivery potentials of microemulsion systems.J Control Rel. 2000;69:421–433.

    Article  CAS  Google Scholar 

  14. Alvarez-Figueroa MJ, Blanco-Mendez J. Transdermal delivery of methotrexate: iontophoretic delivery from hydrogels and passive delivery from microemulsions.Int J Pharm. 2001;215:57–65.

    Article  PubMed  CAS  Google Scholar 

  15. Rhee YS, Choi JG, Park ES, Chi SC. Transdermal delivery of ketoprofen using microemulsions.Int J Pharm. 2001;228:161–170.

    Article  PubMed  CAS  Google Scholar 

  16. Lee PJ, Langer R, Shastri VP. Novel microemulsion enhancer formulation for simultaneous transdermal delivery of hydrophilic and hydrophobic drugs.Pharm Res. 2003;20:264–269.

    Article  PubMed  CAS  Google Scholar 

  17. Kemken J, Ziegler A, Muller BW. Influence of supersaturation on the pharmacodynamic effect of bupranolol after dermal administration using microemulsions as vehicle.Pharm Res. 1992;9:554–558.

    Article  PubMed  CAS  Google Scholar 

  18. Kreilgaard M. Dermal pharmacokinetics of microemulsion formulations determined byin-vitro microdialysis.Pharm Res. 2001;18:367–373.

    Article  PubMed  CAS  Google Scholar 

  19. Kreilgaard M, Kemme MJB, Burggraaf J, Schoemaker RC, Cohen AF. Influence of a microemulsion vehicle on cutaneous bioequivalence of a lipophilic model drug assessed by microdialysis and pharmacodynamics.Pharm Res. 2001;18:593–599.

    Article  PubMed  CAS  Google Scholar 

  20. Ktistis G, Niopas I. A study on thein-vitro percutaneous absorption of propranolol from disperse systems.J Pharm Pharmacol. 1998;50:413–419.

    PubMed  CAS  Google Scholar 

  21. Gasco MR, Gallarate M, Pattarino F. In vitro permeation of azelaic acid from viscosized microemulsions.Int J Pharm. 1991;69:193–196.

    Article  CAS  Google Scholar 

  22. Kriwet K, Muller-Goymann CC. Diclofenac release from phospholipid drug systems and permeation through excised human stratum corneum.Int J Pharm. 1995;125:231–242.

    Article  CAS  Google Scholar 

  23. Trotta M. Influence of phase transformation on indomethacin release from microemulsions.J Control Rel. 1999;60:399–405.

    Article  CAS  Google Scholar 

  24. Baboota S, Shakeel F, Kohli K. Formulation and evaluation of once a day transdermal gels of diclofenac diethylamine.Methods Find Exp Clin Pharmacol. 2006;28:109–114.

    Article  PubMed  CAS  Google Scholar 

  25. Shafiq-un-Nabi S, Shakeel F, Talegaonkar S, et al. Formulation development and optimization using nanoemulsion technique: a technical note.AAPS PharmSciTech [serial online]. 2007;8:E28.

  26. Attwood D, Mallon C, Ktistis G, Taylor CJ. A study on factors influencing the droplet size in nonionic oil-in-water microemulsions.Int J Pharm. 1992;88:417–422.

    Article  CAS  Google Scholar 

  27. Van-Abbe NJ, Nicholas P, Boon E. Exaggerated exposure in topical irritancy and sensitization testing.J Soc Cosmet Chem. 1975;26:173–187.

    Google Scholar 

  28. Winter CA. Anti-inflammatory testing methods: comparative evaluation of indomethacin and other agents.Nonsteroid Anti-inflammat Drugs. 1965;52:190–202.

    Google Scholar 

  29. Gosh MN.Fundamentals of Experimental Pharmacology. Kolkata, India: Hilton and Company; 2005:192.

    Google Scholar 

  30. Craig DQM, Barker SA, Banning D, Booth SW. An investigation into the mechanisms of self-emulsification using particle size analysis and low frequency dielectric spectroscopy.Int J Pharm. 1995;114:103–110.

    Article  CAS  Google Scholar 

  31. Eccleston J. Microemulsions. In: Swarbrick J, Boylan JC, eds.Encyclopedia of Pharmaceutical Technology. vol. 9. New York, NY: Marcel Dekker; 1995:375–421.

    Google Scholar 

  32. Kawakami K, Yoshikawa T, Moroto Y, et al. Microemulsion formulation for enhanced absorption of poorly soluble drugs, I: prescription design.J Control Rel. 2002;81:65–74.

    Article  CAS  Google Scholar 

  33. Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems.Adv Drug Deliv Rev. 2000;45:89–121.

    Article  PubMed  CAS  Google Scholar 

  34. Warisnoicharoen W, Lansley AB, Lawrence MJ. Light scattering investigations on dilute non-ionic oil-in-water microemulsions.AAPS PharmSciTech [serial online]. 2002;2:E12.

  35. Li P, Ghosh A, Wagner RF, Krill S, Joshi YM, Serajuddin ATM. Effect of combined use of nonionic surfactant on formation of oil-in-water microemulsions.Int J Pharm. 2005;288:27–34.

    Article  PubMed  CAS  Google Scholar 

  36. Shinoda K, Kunieda H. Phase properties of emulsions: PIT and HLB. In: Schuster D, ed.Encyclopedia of Emulsion Technology. New York, NY: Marcel Dekker; 1983:337–367.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheikh Shafiq.

Additional information

Published: December 14, 2007

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shakeel, F., Baboota, S., Ahuja, A. et al. Nanoemulsions as vehicles for transdermal delivery of aceclofenac. AAPS PharmSciTech 8, 104 (2007). https://doi.org/10.1208/pt0804104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • DOI: https://doi.org/10.1208/pt0804104

Keywords

Navigation