Skip to main content
Log in

PEG-conjugated PAMAM Dendrimers Mediate Efficient Intramuscular Gene Expression

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Generations 5 and 6 (G5 and G6) poly(amidoamine) (PAMAM) dendrimers have been shown to be highly efficient nonviral carriers in in vitro gene delivery. However, their high toxicity and unsatisfied in vivo efficacy limit their applications. In this study, to improve their characteristics as gene delivery carriers, polyethylene glycol (PEG, molecular weight 5,000) was conjugated to G5 and G6 PAMAM dendrimers (PEG-PAMAM) at three different molar ratios of 4%, 8%, and 15% (PEG to surface amine per PAMAM dendrimer molecular). Compared with unconjugated PAMAM dendrimers, PEG conjugation significantly decreased the in vitro and in vivo cytotoxicities and hemolysis of G5 and G6 dendrimers, especially at higher PEG molar ratios. Among all of the PEG-PAMAM dendrimers, 8% PEG-conjugated G5 and G6 dendrimers (G5-8% PEG, G6-8% PEG) resulted in the most efficient muscular gene expression when polyplexes were injected intramuscularly to the quadriceps of neonatal mice. Consistent with the in vivo results, these two 8% PEG-conjugated PAMAM dendrimers could also mediate the highest in vitro transfection in 293A cells. Therefore, G5-8% PEG and G6-8% PEG possess a great potential for gene delivery both in vivo and in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DMEM:

Dulbecco’s modified Eagle’s medium

DMSO:

dimethyl sulfoxide

FBS:

fetal bovine serum

G5:

PAMAM dendrimer at generation 5

G6:

PAMAM dendrimer at generation 6

MW:

molecular weight

PAMAM:

polyamidoamine

PEI:

poly(ethyleneimine)

PEG:

poly(ethylene glycol)

PLL:

polylysine

pEGFP:

plasmid enhanced green fluorescent protein

THF:

tetrahydrofuran

References

  1. Dufès C, Uchegbu IF, Schätzlein AG. Dendrimers in gene delivery. Adv Drug Deliv Rev. 2005;57:2177–202.

    Article  PubMed  Google Scholar 

  2. Gao Y, Gao G, He Y, Liu TL, Qi R. Recent advances of dendrimers in delivery of genes & drugs. Mini-Rev Med Chem. 2008;8:889–900.

    Article  PubMed  CAS  Google Scholar 

  3. Svenson S, Tomalia DA. Dendrimers in biomedical applications—reflections on the field. Adv Drug Deliv Rev. 2005;57:2106–29.

    Article  PubMed  CAS  Google Scholar 

  4. Kukowska-Latallo JF, Bielinska AU, Johnson J, Spindler R, Tomalia DA, Baker JR Jr. Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers. Proc Natl Acad Sci U S A. 1996;93:4897–902.

    Article  PubMed  CAS  Google Scholar 

  5. Lee CC, Mackay JA, Szoka JF. Designing dendrimers for biological applications. Nat Biotechnol. 2005;23:1517–26.

    Article  PubMed  CAS  Google Scholar 

  6. Malik N, Wiwattanapatapee R, Klopsch R, Lorenz K, Frey H, Weener JW, et al. Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J Control Release. 2000;65:133–48.

    Article  PubMed  CAS  Google Scholar 

  7. Neerman MF, Zhang W, Parrish AR, Simanek EE. In vitro and in vivo evaluation of a melamine dendrimer as a vehicle for drug delivery. Int J Pharm. 2004;281:129–32.

    Article  PubMed  CAS  Google Scholar 

  8. Chen HT, Neerman MF, Parrish AR, Simanek EE. Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery. J Am Chem Soc. 2004;126:10044–8.

    Article  PubMed  CAS  Google Scholar 

  9. Qiu LY, Bae YH. Polymer architecture and drug delivery. Pharm Res. 2006;23:1–30.

    Article  PubMed  CAS  Google Scholar 

  10. Zinselmeyer BH, Mackay SP, Schatzlein AG, Uchegbu IF. The lower-generation polypropylenimine dendrimers are effective gene-transfer agents. Pharm Res. 2002;19:960–7.

    Article  PubMed  CAS  Google Scholar 

  11. Roberts JC, Bhalgat MK, Zera RT. Preliminary biological evaluation of polyamidoamine (PAMAM) starburst dendrimers. J Biomed Mater Res. 1996;30:53–65.

    Article  PubMed  CAS  Google Scholar 

  12. Lee M, Kim SW. Polyethylene glycol-conjugated copolymers for plasmid DNA delivery. Pharm Res. 2005;22:1–10.

    Article  PubMed  CAS  Google Scholar 

  13. Liu MJ, Kono K, Fréchet JM. Water soluble dendrimer–poly(ethylene glycol) starlike conjugates as potential drug carriers. J Polym Sci A Polym Chem. 1999;37:3492–503.

    Article  CAS  Google Scholar 

  14. Bhadra D, Bhadra S, Jain NK. Pegylated lysine based copolymeric dendritic micelles for solubilization and delivery of artemether. J Pharm Pharm Sci. 2005;8:467–82.

    PubMed  CAS  Google Scholar 

  15. Choi YH, Liu F, Kim JS, Choi YK, Park JS, Kim SW. Polyethylene glycol-grafted poly-l-lysine as polymeric gene carrier. J Control Rel. 1998;54:39–48.

    Article  Google Scholar 

  16. Bikram M, Ahn CH, Chae SY, Lee M, Yockman JW, Kim SW. Biodegradable poly(ethylene glycol)-co-poly(l-lysine)-g-histidine multiblock copolymers for nonviral gene delivery. Macromolecules. 2004;37:1903–16.

    Article  CAS  Google Scholar 

  17. Kursa M, Walker GF, Roessler V, Ogris M, Roedl W, Kircheis R, et al. Novel shielded transferrin-polyethylene glycol-polyethylenimine/DNA complexes for systemic tumor-targeted gene transfer. Bioconjug Chem. 2003;14:222–31.

    Article  PubMed  CAS  Google Scholar 

  18. Godbey WT, Wu KK, Mikos AG. Poly(ethylenimine) and its role in gene delivery. J Control Release. 1999;60:149–60.

    Article  PubMed  CAS  Google Scholar 

  19. Jevprasesphant R, Penny J, Jalal R, Attwood D, McKeown NB, D'Emanuele A. The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int J Pharm. 2003;252:263–6.

    Article  PubMed  CAS  Google Scholar 

  20. Petersen H, Fechner PM, Martin AL, Kunath K, Stolnik S, Roberts CJ, et al. Polyethylenimine-graft-poly(ethylene glycol) copolymers: influence of copolymer block structure on DNA complexation and biological activities as gene delivery system. Bioconjug Chem. 2002;13:845–54.

    Article  PubMed  CAS  Google Scholar 

  21. Lee M, Han SO, Ko KS, Koh JJ, Park JS, Yoon JW, et al. Repression of GAD autoantigen expression in pancreas beta-cells by delivery of antisense plasmid/PEG-g-PLL complex. Mol Ther. 2001;4:339–46.

    Article  PubMed  CAS  Google Scholar 

  22. Toncheva V, Wolfert MA, Dash PR, Oupicky D, Ulbrich K, Seymour LW, et al. Novel vectors for gene delivery formed by self-assembly of DNA with poly(l-lysine) grafted with hydrophilic polymers. Biochim Biophys Acta. 1998;1380:354–68.

    PubMed  CAS  Google Scholar 

  23. Huang RQ, Qu YH, Ke WL, Zhu JH, Pei YY, Jiang C. Efficient gene delivery targeted to the brain using a transferrin-conjugated polyethylene glycol-modified polyamidoamine dendrimer. FASEB J. 2007;21:1117–25.

    Article  PubMed  CAS  Google Scholar 

  24. Kim T, Seo HJ, Choi JS, Jang HS, Baek J, Kim K, et al. PAMAM-PEG-PAMAM: novel triblock copolymer as a biocompatible and efficient gene delivery carrier. Biomacromolecules. 2004;5:2487–92.

    Article  PubMed  CAS  Google Scholar 

  25. Yang H, Morris JJ, Lopina ST. Polyethylene glycol-polyamidoamine dendritic micelle as solubility enhancer and the effect of the length of polyethylene glycol arms on the solubility of pyrene in water. J Colloid Interface Sci. 2004;273:148–54.

    Article  PubMed  CAS  Google Scholar 

  26. Kojima C, Kono K, Maruyama K, Takagishi T. Synthesis of polyamidoamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs. Bioconjug Chem. 2000;11:910–7.

    Article  PubMed  CAS  Google Scholar 

  27. Hedden RC, Bauer BJ. Structure and dimensions of PAMAM/PEG dendrimer-star polymers. Macromolecules. 2003;36:1829–35.

    Article  CAS  Google Scholar 

  28. Luo D, Haverstick K, Belcheva N, Han E, Saltzman WM. Poly(ethylene glycol)-conjugated PAMAM dendrimer for biocompatible, high-efficiency DNA delivery. Macromolecules. 2002;35:3456–62.

    Article  CAS  Google Scholar 

  29. Eichman JD, Bielinska AU, Kukowska-Latallo JF, Baker JR Jr. The use of PAMAM dendrimers in the efficient transfer of genetic material into cells. Pharm Sci Technol Today. 2000;3:232–45.

    Article  PubMed  CAS  Google Scholar 

  30. van de Wetering P, Schuurmans-Nieuwenbroek NM, Hennink WE, Storm G. Comparative transfection studies of human ovarian carcinoma cells in vitro, ex vivo and in vivo with poly(2-(dimethylamino) ethyl methacrylate)-based polyplexes. J Gene Med. 1999;1:156–65.

    Article  PubMed  Google Scholar 

  31. Marano RJ, Wimmer N, Kearns PS, Thomas BG, Toth I, Brankov M, et al. Inhibition of in vitro VEGF expression and choroidal neovascularization by synthetic dendrimer peptide mediated delivery of a sense oligonucleotide. Exp Eye Res. 2004;79:525–35.

    Article  PubMed  CAS  Google Scholar 

  32. Sapru MK, McCormick KM, Thimmapaya B. High-efficiency adenovirus-mediated in vivo gene transfer into neonatal and adult rodent skeletal muscle. J Neurosci Methods. 2002;114:99–106.

    Article  PubMed  CAS  Google Scholar 

  33. Acsadi G, Jani A, Massie B, Simoneau M, Holland P, Blaschuk K, et al. A differential efficiency of adenovirus-mediated in vivo gene transfer into skeletal muscle cells of different maturity. Hum Mol Genet. 1994;3:579–84.

    Article  PubMed  CAS  Google Scholar 

  34. Feero WG, Rosenblatt JD, Huard J, Watkins SC, Epperly M, Clemens PR, et al. Viral gene delivery to skeletal muscle: insights on maturation dependent loss of fiber infectivity for adenovirus and herpes simplex type 1 viral vectors. Hum Gene Ther. 1997;8:317–80.

    Article  Google Scholar 

  35. Nalbantoglu J, Pari G, Karpati G, Holland PC. Expression of the primary coxsackie and adenovirus receptor is downregulated during skeletal muscle maturation and limits the efficacy of adenovirus- mediated gene delivery to muscle cells. Hum Gene Ther. 1999;10:1009–19.

    Article  PubMed  CAS  Google Scholar 

  36. Fischera D, Lib Y, Ahlemeyerc B, Krieglsteinc J, Kissela T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials. 2003;24:1121–31.

    Article  Google Scholar 

  37. Desrumaux C, Risold PY, Schroeder H, Deckert V, Masson D, Athias A, et al. Phospholipid transfer protein (PLTP) deficiency reduces brain vitamin E content and increases anxiety in mice. FASEB J. 2005;19:296–7.

    PubMed  CAS  Google Scholar 

  38. Tang MX, Szoka FC. The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes. Gene Ther. 1997;4:823–32.

    Article  PubMed  CAS  Google Scholar 

  39. Azzam T, Domb AJ. Current developments in gene transfection agents. Curr Drug Deliv. 2004;1:165–93.

    Article  PubMed  CAS  Google Scholar 

  40. Grosse S, Aron Y, Thevenot G, Francois D, Monsigny M, Fajac I. Potocytosis and cellular exit of complexes as cellular pathways for gene delivery by polycations. J Gene Med. 2005;7:1275–86.

    Article  PubMed  CAS  Google Scholar 

  41. Rejman J, Oberle V, Zuhorn IS, Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J. 2004;377:159–69.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (no. 30500197).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rong Qi or George Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, R., Gao, Y., Tang, Y. et al. PEG-conjugated PAMAM Dendrimers Mediate Efficient Intramuscular Gene Expression. AAPS J 11, 395–405 (2009). https://doi.org/10.1208/s12248-009-9116-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-009-9116-1

Key words

Navigation