Skip to main content
Log in

Formulation and Optimization of Zinc-Pectinate Beads for the Controlled Delivery of Resveratrol

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Preventive and therapeutic efficacies of resveratrol on several lower gastrointestinal (GI) diseases (e.g., colorectal cancer, colitis) are well documented. To overcome the problems due to its rapid absorption and metabolism at the upper GI tract, a delayed release formulation of resveratrol was designed to treat these lower GI diseases. The current study aimed to develop a delayed release formulation of resveratrol as multiparticulate pectinate beads by varying different formulation parameters. Zinc-pectinate (Zn-pectinate) beads exhibited better delayed drug release pattern than calcium-pectinate (Ca-pectinate) beads. The effects of the formulation parameters were investigated on shape, size, Zn content, moisture content, drug encapsulation efficiency, swelling–erosion, and resveratrol retention pattern of the formulated beads. Upon optimization of the formulation parameters in relative to the drug release profiles, the optimized beads were further subjected to morphological, chemical interaction, enzymatic degradation, and stability studies. Almost all prepared beads were spherical with ∼1 mm diameter and efficiently encapsulated resveratrol. The formulation parameters revealed great influence on resveratrol retention and swelling–erosion behavior. In most of the cases, the drug release data more appropriately fitted with zero-order equation. This study demonstrates that the optimized Zn-pectinate beads can encapsulate very high amount of resveratrol and can be used as delayed release formulation of resveratrol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

Ca:

calcium

CaCl2 :

calcium chloride

Ca-pectinate:

calcium-pectinate

Ca2+ :

calcium cation

EE:

encapsulation efficiency

ER:

elongation ratio

FD:

freeze drying

FTIR:

Fourier transform infra-red

GI tract:

gastrointestinal tract

MC:

moisture content

P–R:

pectin–resveratrol

RT:

room temperature

SER:

swelling–erosion ratio

T 25 :

25% drug retention

T 50 :

50% drug retention

T 75 :

75% drug retention

Zn(CH3COO)2 :

zinc acetate

Zn:

zinc

Zn-pectinate:

zinc-pectinate

Zn2+ :

zinc cation

References

  1. Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov. 2006;5(6):493–506.

    Article  CAS  PubMed  Google Scholar 

  2. Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW et al. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science. 1997;275(5297):218–20.

    Article  CAS  PubMed  Google Scholar 

  3. Delmas D, Lancon A, Colin D, Jannin B, Latruffe N. Resveratrol as a chemopreventive agent: a promising molecule for fighting cancer. Curr Drug Targets. 2006;7(4):423–42.

    Article  CAS  PubMed  Google Scholar 

  4. Das S, Lin HS, Ho PC, Ng KY. The impact of aqueous solubility and dose on the pharmacokinetic profiles of resveratrol. Pharm Res. 2008;25(11):2593–600.

    Article  CAS  PubMed  Google Scholar 

  5. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006;444(7117):337–42.

    Article  CAS  PubMed  Google Scholar 

  6. Martin AR, Villegas I, La Casa C, de la Lastra CA. Resveratrol, a polyphenol found in grapes, suppresses oxidative damage and stimulates apoptosis during early colonic inflammation in rats. Biochem Pharmacol. 2004;67(7):1399–410.

    Article  CAS  PubMed  Google Scholar 

  7. Martin AR, Villegas I, Sanchez-Hidalgo M, de la Lastra CA. The effects of resveratrol, a phytoalexin derived from red wines, on chronic inflammation induced in an experimentally induced colitis model. Br J Pharmacol. 2006;147(8):873–85.

    Article  CAS  PubMed  Google Scholar 

  8. Tessitore L, Davit A, Sarotto I, Caderni G. Resveratrol depresses the growth of colorectal aberrant crypt foci by affecting bax and p21(CIP) expression. Carcinogenesis. 2000;21(8):1619–22.

    Article  CAS  PubMed  Google Scholar 

  9. Schneider Y, Duranton B, Gosse F, Schleiffer R, Seiler N, Raul F. Resveratrol inhibits intestinal tumorigenesis and modulates host-defense-related gene expression in an animal model of human familial adenomatous polyposis. Nutr Cancer. 2001;39(1):102–7.

    Article  CAS  PubMed  Google Scholar 

  10. Basit AW. Advances in colonic drug delivery. Drugs. 2005;65(14):1991–2007.

    Article  CAS  PubMed  Google Scholar 

  11. Friend DR. New oral delivery systems for treatment of inflammatory bowel disease. Adv Drug Deliv Rev. 2005;57(2):247–65.

    Article  CAS  PubMed  Google Scholar 

  12. Liu L, Fishman ML, Kost J, Hicks KB. Pectin-based systems for colon-specific drug delivery via oral route. Biomaterials. 2003;24(19):3333–43.

    Article  CAS  PubMed  Google Scholar 

  13. Wakerly Z, Fell J, Attwood D, Parkins D. Studies on amidated pectins as potential carriers in colonic drug delivery. J Pharm Pharmacol. 1997;49(6):622–5.

    CAS  PubMed  Google Scholar 

  14. Thakur BR, Singh RK, Handa AK. Chemistry and uses of pectin—a review. Crit Rev Food Sci Nutr. 1997;37(1):47–73.

    Article  CAS  PubMed  Google Scholar 

  15. Maestrelli F, Cirri M, Corti G, Mennini N, Mura P. Development of enteric-coated calcium pectinate microspheres intended for colonic drug delivery. Eur J Pharm Biopharm. 2008;69(2):508–18.

    Article  CAS  PubMed  Google Scholar 

  16. Rodriguez M, Vila-Jato JL, Torres D. Design of a new multiparticulate system for potential site-specific and controlled drug delivery to the colonic region. J Control Release. 1998;55(1):67–77.

    Article  CAS  PubMed  Google Scholar 

  17. Sriamornsak P. Effect of calcium concentration, hardening agent and drying condition on release characteristics of oral proteins from calcium pectinate gel beads. Eur J Pharm Sci. 1999;8(3):221–7.

    Article  CAS  PubMed  Google Scholar 

  18. Maestrelli F, Zerrouk N, Cirri M, Mennini N, Mura P. Microspheres for colonic delivery of ketoprofen-hydroxypropyl-beta-cyclodextrin complex. Eur J Pharm Sci. 2008;34(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  19. Dupuis G, Chambin O, Génelot C, Champion D, Pourcelot Y. Colonic drug delivery: influence of cross-linking agent on pectin beads properties and role of the shell capsule type. Drug Dev Ind Pharm. 2006;32(7):847–55.

    Article  CAS  PubMed  Google Scholar 

  20. El-Gibaly I. Oral delayed-release system based on Zn-pectinate gel (ZPG) microparticles as an alternative carrier to calcium pectinate beads for colonic drug delivery. Int J Pharm. 2002;232(1–2):199–211.

    Article  CAS  PubMed  Google Scholar 

  21. Chambin O, Dupuis G, Champion D, Voilley A, Pourcelot Y. Colon-specific drug delivery: influence of solution reticulation properties upon pectin beads performance. Int J Pharm. 2006;321(1–2):86–93.

    Article  CAS  PubMed  Google Scholar 

  22. Das S, Ng K-Y. Resveratrol-loaded calcium-pectinate beads: effects of formulation parameters on drug release and bead characteristics. J Pharm Sci. 2010;99(2):840–60.

    CAS  PubMed  Google Scholar 

  23. Atyabi F, Majzoob S, Iman M, Salehi M, Dorkoosh F. In vitro evaluation and modification of pectinate gel beads containing trimethyl chitosan, as a multi-particulate system for delivery of water-soluble macromolecules to colon. Carbohydr Polym. 2005;61(1):39–51.

    Article  CAS  Google Scholar 

  24. Wong TW, Nurjaya S. Drug release property of chitosan-pectinate beads and its changes under the influence of microwave. Eur J Pharm Biopharm. 2008;69(1):176–88.

    Article  CAS  PubMed  Google Scholar 

  25. Bourgeois S, Tsapis N, Honnas H, Andremont A, Shakweh M, Besnard M et al. Colonic delivery of beta-lactamases does not affect amoxicillin pharmacokinetics in rats. J Pharm Sci. 2008;97(5):1853–63.

    Article  CAS  PubMed  Google Scholar 

  26. Grant GT, Morris ER, Rees DA. Biological interactions between polysaccharides and divalent cations: the egg box model. FEBS Lett. 1973;32(1):195–8.

    Article  CAS  Google Scholar 

  27. Bourgeois S, Gernet M, Pradeau D, Andremont A, Fattal E. Evaluation of critical formulation parameters influencing the bioactivity of beta-lactamases entrapped in pectin beads. Int J Pharm. 2006;324(1):2–9.

    Article  CAS  PubMed  Google Scholar 

  28. Drinker KR, Thompson PK, Marsh M. An investigation of the effect upon rats of long continued ingestion of zinc compounds, with a special reference to the relation of zinc excretion to zinc intake. Am J Physiol. 1927;80:284–306.

    Google Scholar 

  29. Wellner N, Kacurakova M, Malovikova A, Wilson RH, Belton PS. FT-IR study of pectate and pectinate gels formed by divalent cations. Carbohydr Res. 1998;308(1–2):123–31.

    Article  CAS  Google Scholar 

  30. Dronnet VM, Renard CMGC, Axelos MAV, Thibault JF. Characterisation and selectivity of divalent metal ions binding by citrus and sugar-beet pectins. Carbohydr Polym. 1996;30(4):253–63.

    Article  CAS  Google Scholar 

  31. Pillay V, Fassihi R. In vitro release modulation from crosslinked pellets for site-specific drug delivery to the gastrointestinal tract. I. Comparison of pH-responsive drug release and associated kinetics. J Control Release. 1999;59(2):229–42.

    Article  CAS  PubMed  Google Scholar 

  32. Cardoso SM, Coimbra MA, Lopes da Silva JA. JA. Temperature dependence of the formation and melting of pectin-Ca 2+ networks: A rheological study. Food Hydrocoll. 2003;17(6):801–7.

    Article  CAS  Google Scholar 

  33. Gilsenan PM, Richardson RK, Morris ER. Thermally reversible acid-induced gelation of low-methoxy pectin. Carbohydr Polym. 2000;41(4):339–49.

    Article  CAS  Google Scholar 

  34. Lootens D, Capel F, Durand D, Nicolai T, Boulenguer P, Langendorff V. Influence of pH, Ca concentration, temperature and amidation on the gelation of low methoxyl pectin. Food Hydrocoll. 2003;17(3):237–44.

    Article  CAS  Google Scholar 

  35. Sriamornsak P, Nunthanid J. Calcium pectinate gel beads for controlled release drug delivery: I. Preparation and in vitro release studies. Int J Pharm. 1998;160(2):207–12.

    Article  CAS  Google Scholar 

  36. Sriamornsak P. Investigation of pectin as a carrier for oral delivery of proteins using calcium pectinate gel beads. Int J Pharm. 1998;169(2):213–20.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported through a National University of Singapore Academic Research Funds R148-050-068-101 and R148-050-068-133.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, S., Ng, KY. & Ho, P.C. Formulation and Optimization of Zinc-Pectinate Beads for the Controlled Delivery of Resveratrol. AAPS PharmSciTech 11, 729–742 (2010). https://doi.org/10.1208/s12249-010-9435-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-010-9435-7

Key words

Navigation