Skip to main content
Log in

Development of Amphotericin B-Loaded Cubosomes Through the SolEmuls Technology for Enhancing the Oral Bioavailability

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The oral administration of amphotericin B (AmB) has the major drawback of poor bioavailability. The aim of this work was to evaluate the potential of AmB-loaded cubosomes as an oral formulation with improved bioavailability. This manuscript firstly developed AmB-loaded cubosomes by using the SolEmuls technology. The encapsulation efficiency, the in vitro release, and stability studies in simulated gastrointestinal fluid were used to evaluate AmB-loaded cubosomes. The acute nephrotoxicity, bioavailability, and tissue distribution study of AmB-loaded cubosomes were assayed upon oral administration to rats. SAXS and cryo-TEM exhibited AmB-loaded cubosomes as a bicontinuous cubic liquid crystalline phase with Pn3m geometry. The encapsulation efficiency and the results of in vitro release and stability studies in simulated gastrointestinal fluid further demonstrated that AmB was successfully encapsulated in cubosomes. AmB-loaded cubosomal formulation orally administrated in rats did not show nephrotoxicity and its relative bioavailability was approximately 285% as compared to Fungizone®. The AmB-loaded cubosomal formulation presented an effective potential approach for enhancing the oral bioavailability of AmB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kleinberg M. What is the current and future status of conventional amphotericin B? Int J Antimicrob Agents. 2006;27:12–6.

    Article  PubMed  Google Scholar 

  2. Barrett JP, Vardulaki KA, Conlon C, Cooke J, Daza-Ramirez P, Evans EG, et al. A systematic review of the antifungal effectiveness and tolerability of amphotericin B formulations. Clin Ther. 2003;25:1295–320.

    Article  PubMed  CAS  Google Scholar 

  3. Meis JF, Verweij PE. Current management of fungal infections. Drugs. 2001;61:13–25.

    Article  PubMed  CAS  Google Scholar 

  4. Sachs-Barrable K, Lee SD, Wasan EK, Thornton SJ, Wasan KM. Enhancing drug absorption using lipids: a case study presenting the development and pharmacological evaluation of a novel lipid-based oral amphotericin B formulation for the treatment of systemic fungal infections. Adv Drug Deliv Rev. 2008;60:692–701.

    Article  PubMed  CAS  Google Scholar 

  5. Thornton SJ, Wasan KM. The reformulation of amphotericin B for oral administration to treat systemic fungal infections and visceral leishmaniasis. Expert Opin Drug Deliv. 2009;6:271–84.

    Article  PubMed  CAS  Google Scholar 

  6. Wasan EK, Bartlett K, Gershkovich P, Sivak O, Banno B, Wong Z, et al. Development and characterization of oral lipid-based amphotericin B formulations with enhanced drug solubility, stability and antifungal activity in rats infected with Aspergillus fumigatus or Candida albicans. Int J Pharm. 2009;372:76–84.

    Article  PubMed  CAS  Google Scholar 

  7. Gershkovich P, Wasan EK, Lin M, Sivak O, Leon CG, Clement JG, et al. Pharmacokinetics and biodistribution of amphotericin B in rats following oral administration in a novel lipid-based formulation. J Antimicrob Chemother. 2009;64:101–8.

    Article  PubMed  CAS  Google Scholar 

  8. Lynch ML, Ofori-Boateng A, Hippe A, Kochvar K, Spicer PT. Enhanced loading of water-soluble actives into bicontinuous cubic phase liquid crystals using cationic surfactants. J Colloid Interface Sci. 2003;260:404–13.

    Article  PubMed  CAS  Google Scholar 

  9. Chung H, Kim J, Um JY, Kwon IC, Jeong SY. Self-assembled “nanocubicle” as a carrier for peroral insulin delivery. Diabetologia. 2002;45:448–51.

    Article  PubMed  CAS  Google Scholar 

  10. Yang ZW, Peng XS, Tan YH, Chen MW, Zhu XQ, Feng M, et al. Optimization of the preparation process for an oral phytantriol-based amphotericin B cubosomes. J Nanomater. 2011;2011:1–10.

    Google Scholar 

  11. Espada R, Josa JM, Valdespina S, Dea MA, Ballesteros MP, Alunda JM, Torrado JJ. HPLC assay for determination of amphotericin B in biological samples. Biomed Chromatogr. 2008;22:402–7.

    Article  PubMed  CAS  Google Scholar 

  12. Robbie G, Chiou WL. Elucidation of human amphotericin B pharmacokinetics: identification of a new potential factor affecting interspecies pharmacokinetic scaling. Pharm Res. 1998;15:1630–6.

    Article  PubMed  CAS  Google Scholar 

  13. Esposito E, Cortesi R, Drechsler M, Paccamiccio L, Mariani P, Contado C, et al. Cubosome dispersions as delivery systems for percutaneous administration of indomethacin. Pharm Res. 2005;22:2163–73.

    Article  PubMed  CAS  Google Scholar 

  14. Siekmann B, Bunjes H, Koch MH, Westesen K. Preparation and structural investigations of colloidal dispersions prepared from cubic monoglyceride-water phases. Int J Pharm. 2002;244:33–43.

    Article  PubMed  CAS  Google Scholar 

  15. Rizwan SB, Dong YD, Boyd BJ, Rades T, Hook S. Characterisation of bicontinuous cubic liquid crystalline systems of phytantriol and water using cryo field emission scanning electron microscopy (cryo FESEM). Micron. 2007;38:478–85.

    Article  PubMed  CAS  Google Scholar 

  16. Italia JL, Yahya MM, Singh D, Ravi Kumar MN. Biodegradable nanoparticles improve oral bioavailability of amphotericin B and show reduced nephrotoxicity compared to intravenous Fungizone. Pharm Res. 2009;26:1324–31.

    Article  PubMed  CAS  Google Scholar 

  17. Risovic V, Boyd M, Choo E, Wasan KM. Effects of lipid-based oral formulations on plasma and tissue amphotericin B concentrations and renal toxicity in male rats. Antimicrob Agents Chemother. 2003;47:3339–42.

    Article  PubMed  CAS  Google Scholar 

  18. Müller RH, Schmidt S, Buttle I, Akkar A, Schmitt J, Brömer S. SolEmuls-novel technology for the formulation of i.v. emulsions with poorly soluble drugs. Int J Pharm. 2004;269:293–302.

    Article  PubMed  Google Scholar 

  19. Akkar A, Müller RH. Formulation of intravenous carbamazepine emulsions by SolEmuls technology. Eur J Pharm Biopharm. 2003;55:305–12.

    Article  PubMed  CAS  Google Scholar 

  20. Akkar A, Muller RH. Intravenous itraconazole emulsions produced by SolEmuls technology. Eur J Pharm Biopharm. 2003;56:29–36.

    Article  PubMed  CAS  Google Scholar 

  21. Akkar A, Namsolleck P, Blaut M, Müller RH. Solubilizing poorly soluble antimycotic agents by emulsification via a solvent-free process. AAPS PharmSciTech. 2004;5:1–6.

    Article  Google Scholar 

  22. Shadkhan Y, Segal E, Bor A, Gov Y, Rubin M, Lichtenberg D. The use of commercially available lipid emulsions for the preparation of amphotericin B-lipid admixtures. J Antimicrob Chemother. 1997;39:655–8.

    Article  PubMed  CAS  Google Scholar 

  23. Chang CM, Bodmeier R. Swelling of and drug release from monoglyceride-based drug delivery systems. J Pharm Sci. 1997;86:747–52.

    Article  PubMed  CAS  Google Scholar 

  24. Rizwan SB, Boyd BJ, Rades T, Hook S. Bicontinuous cubic liquid crystals as sustained delivery systems for peptides and proteins. Expert Opin Drug Deliv. 2010;7:1133–44.

    Article  PubMed  CAS  Google Scholar 

  25. Yaghmur A, Glatter O. Characterization and potential applications of nanostructured aqueous dispersions. Adv Colloid Interface Sci. 2009;147–148:333–42.

    Article  PubMed  Google Scholar 

  26. Korjamo T, Heikkinen AT, Mönkkönen J. Analysis of unstirred water layer in in vitro permeability experiments. J Pharm Sci. 2009;98:4469–79.

    Article  PubMed  CAS  Google Scholar 

  27. Sallam AS, Khalil E, Ibrahim H, Freij I. Formulation of an oral dosage form utilizing the properties of cubic liquid crystalline phases of glyceryl monooleate. Eur J Pharm Biopharm. 2002;53:343–52.

    Article  PubMed  CAS  Google Scholar 

  28. Um JY, Chung H, Kim KS, Kwon IC, Jeong SY. In vitro cellular interaction and absorption of dispersed cubic particles. Int J Pharm. 2003;253:71–80.

    Article  PubMed  CAS  Google Scholar 

  29. Katneni K, Charman SA, Porter CJ. An evaluation of the relative roles of the unstirred water layer and receptor sink in limiting the in-vitro intestinal permeability of drug compounds of varying lipophilicity. J Pharm Pharmacol. 2008;60:1311–9.

    Article  PubMed  CAS  Google Scholar 

  30. Smith PJ, Olson JA, Constable D, Schwartz J, Proffitt RT, Adler-Moore JP. Effects of dosing regimen on accumulation, retention and prophylactic efficacy of liposomal amphotericin B. J Antimicrob Chemother. 2007;59:941–51.

    Article  PubMed  CAS  Google Scholar 

  31. Ellis M. New dosing strategies for liposomal amphotericin B in high-risk patients. Clin Microbiol Infect. 2008;14:55–64.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to BASF company, Germany, for generous gift samples of Poloxamer 407. The authors are grateful to NCPC Company, China, for generous gift samples of Fungizone®. We thank National Basic Research Program of China (No 81173002) for the financial support. This work was also supported in part by National Key Technology R&D Program (NO:2012BAI35B02) and by Ministry of Science and Technology of China (Projects of International Cooperation and Exchanges; NO2008DFA31080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanbin Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Z., Tan, Y., Chen, M. et al. Development of Amphotericin B-Loaded Cubosomes Through the SolEmuls Technology for Enhancing the Oral Bioavailability. AAPS PharmSciTech 13, 1483–1491 (2012). https://doi.org/10.1208/s12249-012-9876-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-012-9876-2

Keywords

Navigation