Skip to main content

Advertisement

Log in

Dendrimer, Liposomes, Carbon Nanotubes and PLGA Nanoparticles: One Platform Assessment of Drug Delivery Potential

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Liposomes (LIP), nanoparticles (NP), dendrimers (DEN), and carbon nanotubes (CNTs), represent eminent classes of drug delivery devices. A study was carried out herewith by employing docetaxel (DTX) as model drug to assess their comparative drug delivery potentials. Under optimized conditions, highest entrapment of DTX was observed in CNT-based formulation (DTX-CNTs, 74.70 ± 4.9%) followed by nanoparticles (DTX-NP, 62.34 ± 1.5%), liposome (49.2 ± 1.51%), and dendrimers (28.26 ± 1.74%). All the formulations were found to be of nanometric size. In vitro release studies were carried out in PBS (pH 7.0 and 4.0), wherein all the formulations showed biphasic release pattern. Cytotoxicity assay in human cervical cancer SiHa cells inferred lowest IC50 value of 1,235.09 ± 41.93 nM with DTX-CNTs, followed by DTX-DEN, DTX-LIP, DTX-NP with IC50 values of 1,571.22 ± 151.27, 1,653.98 ± 72.89, 1,922.75 ± 75.15 nM, respectively. Plain DTX showed higher hemolytic toxicity of 22.48 ± 0.94%, however loading of DTX inside nanocarriers drastically reduced its hemolytic toxicity (DTX-DEN, 17.22 ± 0.48%; DTX-LIP, 4.13 ± 0.19%; DTX-NP, 6.43 ± 0.44%; DTX-CNTs, 14.87 ± 1.69%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cho K, Wang X, Nie S, Chen ZG, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res. 2008;14:1310–6.

    Article  PubMed  CAS  Google Scholar 

  2. Pal DK, Nayak AK. Nanotechnology for targeted delivery in cancer therapeutics. Int J Pharm Sci Rev Res. 2010;1:1–7.

    CAS  Google Scholar 

  3. Tomalia DA, Naylor AM, Goddard WA. Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew Chem Int Ed. 1990;29:138–75.

    Article  Google Scholar 

  4. Solomon R, Gabizon AA. Clinical pharmacology of liposomal anthracyclines: focus on pegylated liposomal doxorubicin. Clin Lymphoma Myeloma. 2008;8:21–32.

    Article  CAS  Google Scholar 

  5. Bawa R. Nanoparticle based therapeutics in humans: a survey. Nanotech Law Bus. 2008;5:135–55.

    Google Scholar 

  6. Fader AN, Rose PG. Abraxane for the treatment of gynecologic cancer patients with severe hypersensitivity reactions to paclitaxel. Int J Gynecol Cancer. 2009;19:1281–3.

    Article  PubMed  Google Scholar 

  7. Danhier F, Feron O, Véronique PV. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Rel. 2010;148:135–46.

    Article  CAS  Google Scholar 

  8. Lee KS, Chung HC, Im SA, Park YH, Kim CS, Kim SB, et al. Multicenter phase II trial of Genexol-PM, a cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res Treat. 2008;108:241–50.

    Article  PubMed  CAS  Google Scholar 

  9. Jiang S, Gnanasammandhan MK, Zhang Y. Optical imaging-guided cancer therapy with fluorescent nanoparticles. J R Soc Interface. 2010;7:3–18.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Park JH, Maltzahn GV, Xu MJ, Fogal V, Kotamraju VR, Ruoslathi E, et al. Cooperative nanomaterial system to sensitize, target and treat tumors. Proc Natl Acad Sci U S A. 2010;107:981–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Bharali DJ, Khalil M, Gurbuz M, Simone TM, Mousa SA. Nanoparticles and cancer therapy: a concise review with emphasis on dendrimers. Int J Nanomed. 2009;4:1–7.

    Article  CAS  Google Scholar 

  12. Tekade RK, Vijayarajkumar P, Jain NK. Dendrimers in oncology: an expanding horizon. Chem Rev. 2009;109:49–87.

    Article  PubMed  CAS  Google Scholar 

  13. Li Y, Wang J, Wientjes MG, Au JL. Delivery of nanomedicines to extracellular and intracellular compartments of a solid tumor. Adv Drug Deliv Rev. 2012;64:29–39.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Maeda H, Bharate GY, Daruwalla J. Polymeric drugs for efficient tumor targeted drug delivery based on EPR-effect. Euro J Pharm Biopharm. 2009;71:409–19.

    Article  CAS  Google Scholar 

  15. Panyala NR, Penamendez EM, Havel J. Gold and nano-gold in medicine: overview, toxicology and perspectives. J App Biomed. 2009;7:75–91.

    CAS  Google Scholar 

  16. Weili Q, Bochu W, Yazhou W, Lichun Y, Yiqiong Z, Pengyu S. Cancer therapy based on nanomaterial and nanocarrier systems. J Nanomat. 2010;1:1–9.

    Article  CAS  Google Scholar 

  17. Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Del Rev. 2011;63:131–5.

    Article  CAS  Google Scholar 

  18. Maheshwari RGS, Tekade RK, Sharma PA, Gajanan D, Tyagi A, Patel RP, et al. Ethosomes and ultradeformable liposomes for transdermal delivery of clotrimazole: a comparative assessment. Saudi Pharm J. 2012;20:161–70.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Song KC, Lee HS, Choung Y, Cho KI, Ahn Y, Choi EJ. The effect of organic phase on the particle size of poly (d, l-lactide-co-glycolide) nanoparticles. Colloid Surf A: Physicochem Eng Aspects. 2006;276:162–7.

    Article  CAS  Google Scholar 

  20. Tekade RK, Dutta T, Tyagi A, Bharti AC, Das BC, Jain NK. Surface-engineered dendrimers for dual drug delivery: a receptor up-regulation and enhanced cancer targeting strategy. J Drug Target. 2008;16:758–72.

    Article  PubMed  CAS  Google Scholar 

  21. Prajapati RN, Tekade RK, Gupta U, Gajbhiye V, Jain NK. Dendimer-mediated solubilization, formulation development and in vitro–in vivo assessment of piroxicam. Mol Pharma. 2009;6:940–50.

    Article  CAS  Google Scholar 

  22. Agrawal U, Mehra NK, Gupta U, Jain NK. Hyperbranched dendritic nano-carriers for topical delivery of dithranol. J Drug Target. 2013;21:497–506.

    Article  PubMed  CAS  Google Scholar 

  23. Mehra NK, Jain AK, Lodhi N, Dubey V, Mishra D, Raj R, et al. Challenges in the use of carbon nanotubes in biomedical applications. Crit Rev Ther Drug Carr Syst. 2008;25:169–206.

    Article  CAS  Google Scholar 

  24. Shen J, Huang W, Wu L, Hu Y, Ye M. Thermo-physical properties of epoxy nanocomposites reinforced with amino-functionalized multi-walled carbon nanotubes. Composites: Part A Applied Sci Manuf. 2007;38:1331–6.

    Article  CAS  Google Scholar 

  25. Jain AK, Dubey V, Mehra NK, Lodhi N, Nahar M, Mishra DM, et al. Carbohydrate-conjugated multiwalled carbon nanotubes: development and characterization. Nanomed: Nanotech Biol Med. 2009;5:432–42.

    CAS  Google Scholar 

  26. Lin C, Wang Y, Lai Y, Yang W, Jiao F, Zhang H, et al. Incorporation of carboxylation multiwalled carbon nanotubes into biodegradable poly (lactic-co-glycolic acid) for bone tissue engineering. ColloSurf B: Biointerfaces. 2011;83:367–75.

    PubMed  CAS  Google Scholar 

  27. Li J, Zhang Y. Cutting of multi walled carbon nanotube. App Surf Sci. 2006;252:2944–8.

    Article  CAS  Google Scholar 

  28. Pruthi J, Mehra NK, Jain NK. Macrophages targeting of amphotericin B through mannosylated multiwalled carbon nanotubes. J Drug Target. 2012;20:593–604.

    Article  PubMed  CAS  Google Scholar 

  29. Singh R, Mehra NK, Jain V, Jain NK. Gemcitabine-loaded smart carbon nanotubes for effective targeting to cancer cell. J Drug Target. 2013;21:581–92.

    Article  PubMed  CAS  Google Scholar 

  30. Lodhi N, Mehra NK, Jain NK. Development and characterization of dexamethasone mesylate anchored on multi walled carbon nanotubes. J Drug Target. 2013;21:67–76.

    Article  PubMed  CAS  Google Scholar 

  31. Fry DW, White JC, Goldman ID. Rapid separation of low molecular weight solutes from liposome without dilution. J Anal Biochem. 1978;90:809–15.

    Article  CAS  Google Scholar 

  32. Senthilkumar M, Mishra P, Jain NK. Long circulating PEGylated poly (d, l-lactide-co-glycolide) nanoparticulate delivery of DTX to solid tumors. J Drug Target. 2008;16:424–35.

    Article  PubMed  CAS  Google Scholar 

  33. Gajbhiye V, Vijayaraj Kumar P, Tekade RK, Jain NK. PEGylated PPI dendritic architectures for sustained delivery of H2 receptor antagonist. Eur J Med Chem. 2009;44:1155–66.

    Article  PubMed  CAS  Google Scholar 

  34. Kumar PV, Asthana A, Dutta T, Jain NK. Intracellular macrophage uptake of rifampicin loaded mannosylated dendrimers. J Drug Target. 2006;14:546–56.

    Article  PubMed  CAS  Google Scholar 

  35. Ganesh GNK, Gowthamarajan K, Suresh RK, Senthil V, Jawahar N, Venkatesh N, et al. Formulation and evaluation of liposomal drug delivery system for an anticancer drug and the study the effect of various stabilizers based on physicochemical and in-vitro characterization. Int J Pharm Res Develop. 2011;3:27–37.

    Google Scholar 

  36. Mishra V, Gupta U, Jain NK. Influence of different generations of poly (propylene imine) dendrimers on human erythrocytes. Pharmazie. 2010;65:891–5.

    PubMed  CAS  Google Scholar 

  37. Tekade RK, Dutta T, Gajbhiye V, Jain NK. Exploring dendrimers towards dual–drug delivery: pH responsive simultaneous kinetics. J Microencap. 2009;26:287–96.

    Article  CAS  Google Scholar 

  38. Kesharwani P, Tekade RK, Gajbhiye V, Jain K, Jain NK. Cancer targeting potential of some ligand-anchored poly (propylene imine) dendrimers: a comparison. Nanomed: Nanotechnol Biol Med. 2011;7:295–304.

    CAS  Google Scholar 

  39. Bhadra D, Bhadra S, Jain NK. PEGylated lysine based copolymeric dendritic micelles for solubilization and delivery of artemether. J Pharm Pharm Sci. 2005;8:467–82.

    PubMed  CAS  Google Scholar 

  40. Gajbhiye V, Vijayaraj Kumar P, Tekade RK, Jain NK. Pharmaceutical and biomedical potential of PEGylated dendrimers. Curr Pharm Design. 2007;13:415–29.

    Article  CAS  Google Scholar 

  41. Dhakad RS, Tekade RK, Jain NK. Cancer targeting potential of folate targeted nanocarrier under comparative influence of tretinoin and dexamethasone. Curr Drug Deliv. 2013;10:477–91.

    Article  PubMed  CAS  Google Scholar 

  42. Ganesh T. Improved biochemical strategies for targeted delivery of taxoids. Bioorg Med Chem. 2007;15:3597–623.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Karousis N, Tagmatarchis N. Current progress on the chemical modification of carbon nanotubes. Chem Rev. 2010;110:5366–97.

    Article  PubMed  CAS  Google Scholar 

  44. Prato M, Kostas KK, Bianco A. Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res. 2008;41:60–8.

    Article  PubMed  CAS  Google Scholar 

  45. Mehra NK, Jain NK. Development, characterization and cancer targeting potential of surface engineered carbon nanotubes. J Drug Target. 2013. doi:10.3109/1061186X.2013.813028.

    Google Scholar 

  46. Gupta R, Mehra NK, Jain NK. Fucosylated multiwalled carbon nanotubes for kupffer cells targeting for the treatment of cytokine-induced liver damage. Pharm Research. 2013. doi:10.1007/s11095-013-1162-9.

    Google Scholar 

  47. Faranz E, Rassoul D, Hossein MG, Nasser OS, Hadi E, Fatemeh A. Cellular cytotoxicity and in-vivo biodistribution of docetaxel poly (lactide-co glycolide) nanoparticles. Anticancer Drug. 2010;21:43–52.

    Article  CAS  Google Scholar 

  48. Kuzmany H, Kukovecz A, Simon F, Holzweber M, Kramberger C, Pichler T. Functionalization of carbon nanotubes. Synth Met. 2004;141:113–22.

    Article  CAS  Google Scholar 

  49. Balasubramanian SV, Alderfer JL, Straubinger RM. Solvent and concentration dependent molecular interactions of taxol (paclitaxel). J Pharm Sci. 1994;83:1470–6.

    Article  PubMed  CAS  Google Scholar 

  50. Thakur S, Tekade RK, Jain NK. The effect of polyethylene glycol spacer chain length on the tumor targeting potential of folate modified PPI dendrimers. J. Nanoparticle Res. 2013.

  51. Dwivedi P, Tekade RK, Jain NK. Nanoparticulate carrier mediated intranasal delivery of insulin for the restoration of memory signaling in alzheimer’s disease. Curr Nanoscience. 2013;9:46–55.

    CAS  Google Scholar 

  52. Jain NK, Mishra V, Mehra NK. Targeted drug delivery to macrophages. Exp Opin Drug Deliv. 2013;10:353–67.

    Article  CAS  Google Scholar 

  53. Kam NWS, Dai H. Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J Am Chem Soc. 2005;127:6021–6.

    Article  PubMed  CAS  Google Scholar 

  54. Jain NK, Tekade RK. Drug delivery strategies for poorly water–soluble drugs. Kent: Wiley Blackwell; 2012. p. 373–409.

    Google Scholar 

  55. Tekade RK, Chougule MB. Formulation development and evaluation of hybrid nanocarrier for cancer therapy: Taguchi orthogonal array based design. Biomed Res Int. 2013. doi:10.1155/2013/712678.

    Google Scholar 

  56. Mehra NK, Mishra V, Jain NK. A review of ligand tethered surface engineered carbon nanotubes. Biomat. 2013. doi:10.032/2013.

    Google Scholar 

  57. Youngren SR, Tekade RK, Gustilo B, Hoffmann PR, Chougule MB. STAT6 siRNA matrix-loaded gelatin nanocarriers: formulation, characterization, and ex vivo proof of concept using adenocarcinoma cells. Biomed Res Int. 2013;2013:858946. doi:10.1155/2013/858946.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank All India Council of Technical Education (AICTE) and University Grants Commission (UGC), New Delhi (INDIA), for providing the financial assistance. The authors are also grateful to SAIF, Punjab University, Chandigarh, Banaras Hindu University, Varanasi (India), for analytical support, Institute of Cytology and Preventive Oncology, Indian Council of Medical Research, Noida (UP), India, for extending facilities to perform ex vivo studies. The authors would also like to acknowledge M/s. Sun Pharma Advanced Research Centre (SPARC) Vadodara, Gujarat, Indi,a for providing the gift samples of DTX and PLGA, and Lipoid, Germany, for generous gift sample of Soya PC.

Conflict of interest

No conflict of interest related to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narendra Kumar Jain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mody, N., Tekade, R.K., Mehra, N.K. et al. Dendrimer, Liposomes, Carbon Nanotubes and PLGA Nanoparticles: One Platform Assessment of Drug Delivery Potential. AAPS PharmSciTech 15, 388–399 (2014). https://doi.org/10.1208/s12249-014-0073-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-014-0073-3

KEY WORDS

Navigation