Skip to main content

Advertisement

Log in

Liquid Crystalline Systems for Transdermal Delivery of Celecoxib: In Vitro Drug Release and Skin Permeation Studies

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Liquid crystalline systems of monoolein/water could be a promising approach for the delivery of celecoxib (CXB) to the skin because these systems can sustain drug release, improve drug penetration into the skin layers and minimize side effects. This study evaluated the potential of these systems for the delivery of CXB into the skin based on in vitro drug release and skin permeation studies. The amount of CXB that permeated into and/or was retained in the skin was assayed using an HPLC method. Polarizing light microscopy studies showed that liquid crystalline systems of monoolein/water were formed in the presence of CXB, without any changes in the mesophases. The liquid crystalline systems decreased drug release when compared to control solution. Drug release was independent of the initial water content of the systems and CXB was released from cubic phase systems, irrespective of the initial water content. The systems released the CXB following zero-order release kinetics. In vitro drug permeation studies showed that cubic phase systems allowed drug permeation and retention in the skin layers. Cubic phase systems of monoolein/water may be promising vehicles for the delivery of CXB in/through the skin because it improved CXB skin permeation compared with the control solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. Cid YP, Pedrazzi V, Sousa VP, Pierre MBR. In vitro characterization of chitosan gels for buccal delivery of celecoxib: influence of a penetration enhancer. AAPS PharmSciTech. 2012;13:101–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Ventura CA, Tommazini S, Falcone A, Gianonne I, Paolino D, Sdrafkakis V, et al. Influence of modified cyclodextrins on solubility and percutaneous absorption of celecoxib through human skin. Int J Pharm. 2006;314:37–45.

    Article  CAS  PubMed  Google Scholar 

  3. Subramanian N, Ghosal SK, Moulik SP. Enhanced in vitro percutaneous absorption and in vivo anti-inflammatory effect of a selective cyclooxygenase inhibitor using microemulsion. Drug Dev Ind Pharm. 2005;31:405–16.

    Article  CAS  PubMed  Google Scholar 

  4. Joshi M, Patravale V. Nanostructured lipid carrier (NLC) based gel of celecoxib. Int J Pharm. 2008;346:124–32.

    Article  CAS  PubMed  Google Scholar 

  5. Shakeel F, Baboota S, Ahuja A, Ali J, Shafiq S. Skin permeation mechanism and bioavailability enhancement of celecoxib from transdermally applied nanoemulsion. J Nanobiotechnol. 2008;6:1–11.

    Article  Google Scholar 

  6. Soliman SM, Malak NSA, El-Gazayerly ON, Rehim AAA. Formulation of microemulsion gel systems for transdermal delivery of celecoxib: in vitro permeation, anti-inflammatory activity and skin irritation tests. Drug Discov Ther. 2010;4:459–71.

    CAS  PubMed  Google Scholar 

  7. Sharma PK, Bajpai M. Enhancement of solubility and stability of Celecoxib using microemulsion based topical formulation. J Pharm Res. 2011;4:2216–20.

    CAS  Google Scholar 

  8. Quiñones OG, Mata Dos Santos HA, Kibwila DM, Leitão A, Dos Santos Pyrrho A, Pádua MD et al. In vitro and in vivo influence of penetration enhancers in the topical application of celecoxib. Drug Dev Ind Pharm 2013. doi:10.3109/03639045.2013.809731.

  9. Bender J, Jarvoll P, Nydén M, Engstron S. Structure and dynamics of a sponge phase in the methyl σ-aminolevulinate/monoolein/water/propylene glycol system. J Colloid Interface Sci. 2008;317:577–84.

    Article  CAS  PubMed  Google Scholar 

  10. Yariv D, Efrat R, Libster D, Aserin A, Garti N. In vitro permeation of diclofenac salts from lyotropic liquid crystalline systems. Colloids Surf B: Biointerfaces. 2010;78:185–92.

    Article  CAS  PubMed  Google Scholar 

  11. Praça FS, Bentley MV, Lara MG, Pierre MB. Celecoxib determination in different layers of skin by a newly developed and validated HPLC-UV. Biomed Chromatogr. 2011;25:1237–44.

    Article  PubMed  Google Scholar 

  12. Lopes LB, Ferreira DA, de Paula D, Garcia MTJ, Thomazini JA, Fantini MCA, et al. Reverse hexagonal phase nanodispersion of monoolein and oleic acid for topical delivery of peptides: in vitro and in vivo skin penetration of cyclosporine A. Pharm Res. 2006;23:1332–42.

    Article  CAS  PubMed  Google Scholar 

  13. Yener G, Gonullu U, Uner M, Degim T, Araman A. Effect of vehicles and penetration enhancers on the in vitro percutaneous absorption of celecoxib through human skin. Pharmazie. 2003;58:330–3.

    CAS  PubMed  Google Scholar 

  14. Shah JC, Sadhale Y, Chilukuri DM. Cubic phase gels as drug delivery systems. Adv Drug Deliv Rev. 2001;47:229–50.

    Article  CAS  PubMed  Google Scholar 

  15. Engström S, Engström L. Phase behaviour of the lidocaine-monoolein-water system. Int J Pharm. 1992;79:113–22.

    Article  Google Scholar 

  16. Kumar MK, Shah MH, Ketkar A, Mahadik KR, Paradkar A. Effect of drug solubility and different excipients on floating behavior and release from glyceryl monooleate matrices. Int J Pharm. 2004;272:151–60.

    Article  CAS  Google Scholar 

  17. Steluti R, De Rosa FS, Collett J, Tedesco AC, Bentley MVLB. Topical glycerol monooleate/propylene glycol formulations enhance 5-aminolevulinic acid in vitro skin delivery and in vivo protophorphyrin IX accumulation in hairless mouse skin. Eur J Pharm Biopharm. 2005;60:439–44.

    Article  CAS  PubMed  Google Scholar 

  18. Caboi F, Amico GS, Pitzalis P, Monduzzi M, Nylander T, Larson K. Addition of hydrophilic and lipophilic compounds of biological relevance to the monoolein/water system. I. Phase behavior. Chem Phys Lipids. 2001;109:47–62.

    Article  CAS  PubMed  Google Scholar 

  19. Boyd BJ, Whittaker DV, Khoo SM, Davey G. Lyotropic liquid crystalline phases formed from glycerate surfactants as sustained release drug delivery systems. Int J Pharm. 2006;309:218–26.

    Article  CAS  PubMed  Google Scholar 

  20. Chang CM, Bodmeier R. Effect of dissolution media and additives on the drug release from cubic phase delivery systems. J Control Release. 1997;46:215–22.

    Article  CAS  Google Scholar 

  21. Shah MH, Paradkar A. Effect of HLB of additives on the properties and drug release from the glyceryl monooleate matrices. Eur J Pharm Biopharm. 2007;67:166–74.

    Article  CAS  PubMed  Google Scholar 

  22. Ganen-Quintanar A, Quintanar-Guerreiro D, Buri P. Monoolein: a review of the pharmaceutical applications. Drug Dev Ind Pharm. 2000;26:809–20.

    Article  Google Scholar 

  23. Guo C, Wang J, Cao F, Lee RJ, Zhai G. Lyotropic liquid crystal systems in drug delivery. Drug Discov Today. 2010;15:1032–40.

    Article  CAS  PubMed  Google Scholar 

  24. Fong C, Le T, Drummond CJ. Lyotropic liquid crystal engineering-ordered nanostructured small molecule amphiphile self-assembly materials by design. Chem Soc Rev. 2012;41:1297–322.

    Article  CAS  PubMed  Google Scholar 

  25. Sallam A, Khalil E, Ibrahim H, Freij I. Formulation of an oral dosage form utilizing the properties of cubic liquid crystalline phases of glyceryl monooleate. Eur J Pharm Biopharm. 2002;53:343–52.

    Article  CAS  PubMed  Google Scholar 

  26. Costa-Balogh FOC, Sparr E, Souza JJS, Paes AC. Drug release from lipid liquid crystalline phases: relation with phase behavior. Drug Dev Ind Pharm. 2010;36:470–81.

    Article  CAS  PubMed  Google Scholar 

  27. Simonetti LDD, Gelfuso GM, Barbosa JCR, Lopez RFV. Assessment of the percutaneous penetration of cisplatin: the effect of monoolein and the drug skin penetration pathway. Eur J Pharm Biopharm. 2009;73:90–4.

    Article  CAS  PubMed  Google Scholar 

  28. Lopes LB, Speretta FFF, Bentley MVLB. Enhancement of skin penetration of vitamin K using monoolein-based liquid crystalline systems. Eur J Pharm Sci. 2007;32:209–15.

    Article  CAS  PubMed  Google Scholar 

  29. Carr MG, Corish J, Corrigan OI. Drug delivery from a liquid crystalline base across visking and human stratum corneum. Int J Pharm. 1997;157:35–42.

    Article  CAS  Google Scholar 

  30. Clogston J, Rathman J, Tomasko D, Walker H, Caffrey M. Phase behavior of a monoacylglycerol (Myverol 18-99K)/water system. Chem Phys Lipids. 2000;107:191–220.

    Article  CAS  PubMed  Google Scholar 

  31. Burrows R, Collett JH, Attwood D. The release of drugs from monoglyceride-water liquid crystalline phases. Int J Pharm. 1994;111:283–93.

    Article  CAS  Google Scholar 

  32. Rigter PL, Peppas NA. A simple equation for description of solute release. II. Fickian and anomalous release from swellable devices. J Control Release. 1987;5:37–42.

    Article  Google Scholar 

  33. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15:25–35.

    Article  CAS  Google Scholar 

  34. Chang CM, Bodmeier R. Low viscosity monoglyceride-based drug delivery systems transforming into a highly viscous cubic phase. Int J Pharm. 1998;173:51–60.

    Article  CAS  Google Scholar 

  35. Phan S, Fong WK, Kirby N, Hanley T, Boyd BJ. Evaluating the link between self-assembled mesophase structure and drug release. Int J Pharm. 2011;421:176–82.

    Article  CAS  PubMed  Google Scholar 

  36. Norling T, Lading P, Engströn S, Larsson K, Krog N, Nissen SS. Formulation of a drug delivery system based on a mixture of monoglycerides and triglycerides for use in the treatment of periodontal disease. J Clin Periodontol. 1992;19:687–92.

    Article  CAS  PubMed  Google Scholar 

  37. Nielsen LS, Schubert L, Hansen J. Bioadhesive drug delivery systems. I. Characterisation of mucoadhesive properties of systems based on glyceryl mono-oleate and glyceryl monolinoleate. Eur J Pharm Sci. 1998;6:231–9.

    Article  CAS  PubMed  Google Scholar 

  38. Dantona P, Parker Jr WO, Zanirato MC, Esposito E, Nastruzzi C. Rheologic and NMR characterization of monoglyceride-based formulations. J Biomed Mater Res. 2000;52:40–52.

    Article  CAS  Google Scholar 

  39. Alfons K, Engström S. Drug compatibility with the sponge phases formed in monoolein, water and propyleneglycol or poly (ethylene glycol). J Pharm Sci. 1998;87:1527–30.

    Article  CAS  PubMed  Google Scholar 

  40. Chang CM, Bodmeier R. Swelling of and drug release from monoglyceride-based drug delivery systems. J Pharm Sci. 1997;86:747–52.

    Article  CAS  PubMed  Google Scholar 

  41. Geraghty PB, Attwood D, Collett JH, Dandiker Y. The in vitro release of some antimuscarinic drugs from monoolein/water lyotropic liquid crystalline gels. Pharm Res. 1996;13:1265–71.

    Article  CAS  PubMed  Google Scholar 

  42. Rizwan SB, Hanley T, Boyd BJ, Rades T, Hook S. Liquid crystalline systems of phytantriol and glyceryl monooleate containing a hydrophilic protein: characterization, swelling and release kinetics. J Pharm Sci. 2009;98:4191–204.

    Article  CAS  PubMed  Google Scholar 

  43. Lee J, Kellaway IW. In vitro peptide release from liquid crystalline buccal delivery systems. Int J Pharm. 2000;195:29–33.

    Article  CAS  PubMed  Google Scholar 

  44. Lara MG, Bentley MV, Collett JH. In vitro drug release mechanism and drug loading studies of cubic phase gels. Int J Pharm. 2005;293:241–50.

    Article  CAS  PubMed  Google Scholar 

  45. Bertram U, Bodmeier R. Parameters affecting the drug release from in situ gelling nasal inserts. Eur J Pharm Biopharm. 2006;63:310–9.

    Article  CAS  PubMed  Google Scholar 

  46. Allababidi S, Shah JC. Kinetics and mechanism of release from glyceryl monostearate-based implants: evaluation of release in a gel simulating in vivo implantation. J Pharm Sci. 1998;87:738–44.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ) e Universidade de São Paulo (USP), Brazil for supporting this study.

Conflict of interest

The authors report no declarations of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilisa Guimarães Lara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Estracanholli, É.A., Praça, F.S.G., Cintra, A.B. et al. Liquid Crystalline Systems for Transdermal Delivery of Celecoxib: In Vitro Drug Release and Skin Permeation Studies. AAPS PharmSciTech 15, 1468–1475 (2014). https://doi.org/10.1208/s12249-014-0171-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-014-0171-2

KEY WORDS

Navigation