Skip to main content

Advertisement

Log in

Systematic Evaluation of a Diclofenac-Loaded Carboxymethyl Cellulose-Based Wound Dressing and Its Release Performance with Changing pH and Temperature

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Development of drug-loaded wound dressings is often performed without systematic consideration of the changing wound environment that can influence such materials’ performance. Among the crucial changes are the wound pH and temperature, which have an immense effect on the drug release. Detailed release studies based on the consideration of these changing properties provide an important aspect of the in vitro performance testing of novel wound dressing materials. A sodium carboxymethyl cellulose-based wound dressing, with the incorporated non-steroidal anti-inflammatory drug diclofenac, was developed and characterised in regard to its physico-chemical, structural and morphological properties. Further, the influence of pH and temperature were studied on the drug release. Finally, the biocompatibility of the wound dressing towards human skin cells was tested. Incorporation of diclofenac did not alter important properties (water retention value, air permeability) of the host material. Changes in the pH and temperature were shown to influence the release performance and have to be accounted for in the evaluation of such dressings. Furthermore, the knowledge about the potential changes of these parameters in the wound bed could be used potentially to predict, and potentially even to control the drug release from the developed wound dressing. The prepared wound dressing was also proven biocompatible towards human skin cells, making it interesting for potential future use in the clinics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ADMEM :

Advanced Dulbecco’s Modified Eagle Medium

AQ :

Aquacel™

ATR :

Attenuated total reflectance-infrared

DCF :

Diclofenac sodium

DMEM:

Dulbecco’s Modified Eagle’s Medium

FBS :

Fetal bovine serum

HACAT :

Aneuploid immortal keratinocyte cell line

MTT :

(3(4,5 dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide

Na-CMC :

Sodium carboxymethyl cellulose

NSAID :

Non-steroid anti-inflammatory pain-killing drugs

PBS :

Phosphate buffer solution

SEM :

Scanning electron microscopy

SF :

Human skin fibroblasts

T :

Temperature

References

  1. Choi YS, Kang H, Kim DG, Cha SH, Lee JC. Mussel-inspired dopamine- and plant-based cardanol-containing polymer coatings for multifunctional filtration membranes. ACS Appl Mater Interfaces. 2014;6(23):21297–307. https://doi.org/10.1021/am506263s.

    Article  CAS  PubMed  Google Scholar 

  2. Maver T, Maver U, Pivec T, Kurečič M, Peršin Z, Kleinschek KS. Bioactive polysaccharide materials for modern wound healing. Berlin: Springer; 2018.

    Book  Google Scholar 

  3. Maver T, Smrke D, Kurečič M, Gradišnik L, Maver U, Kleinschek KS. Combining 3D printing and electrospinning for preparation of pain-relieving wound-dressing materials. J Sol-Gel Sci Technol. 2018:1–16.

  4. Pawar HV, Boateng JS, Ayensu I, Tetteh J. Multifunctional medicated lyophilised wafer dressing for effective chronic wound healing. J Pharm Sci. 2014;103(6):1720–33. https://doi.org/10.1002/jps.23968.

    Article  CAS  PubMed  Google Scholar 

  5. Catanzano O, Docking R, Schofield P, Boateng J. Advanced multi-targeted composite biomaterial dressing for pain and infection control in chronic leg ulcers. Carbohydr Polym. 2017;172:40–8.

    Article  CAS  Google Scholar 

  6. Jung SM, Yoon GH, Lee HC, Shin HS. Chitosan nanoparticle/PCL nanofiber composite for wound dressing and drug delivery. J Biomater Sci Polym Ed. 2015;26(4):252–63. https://doi.org/10.1080/09205063.2014.996699.

    Article  CAS  PubMed  Google Scholar 

  7. Moritz S, Wiegand C, Wesarg F, Hessler N, Müller FA, Kralisch D, et al. Active wound dressings based on bacterial nanocellulose as drug delivery system for octenidine. Int J Pharm. 2014;471(1–2):45–55. https://doi.org/10.1016/j.ijpharm.2014.04.062.

    Article  CAS  PubMed  Google Scholar 

  8. Niiyama H, Kuroyanagi Y. Development of novel wound dressing composed of hyaluronic acid and collagen sponge containing epidermal growth factor and vitamin C derivative. J Artif Organs. 2014;17(1):81–7. https://doi.org/10.1007/s10047-013-0737-x.

    Article  CAS  PubMed  Google Scholar 

  9. Abdelgawad AM, Hudson SM, Rojas OJ. Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems. Carbohydr Polym. 2014;100:166–78. https://doi.org/10.1016/j.carbpol.2012.12.043.

    Article  CAS  PubMed  Google Scholar 

  10. Maver T, Kurečič M, Smrke DM, Kleinschek KS, Maver U. Electrospun nanofibrous CMC/PEO as a part of an effective pain-relieving wound dressing. J Sol-Gel Sci Technol. 2015;79:1–12. https://doi.org/10.1007/s10971-015-3888-9.

    Article  CAS  Google Scholar 

  11. Maver T, Gradišnik L, Kurečič M, Hribernik S, Smrke D, Maver U, et al. Layering of different materials to achieve optimal conditions for treatment of painful wounds. Int J Pharm. 2017;529:576–88.

    Article  CAS  Google Scholar 

  12. Maver T, Hribernik S, Mohan T, Smrke DM, Maver U, Stana-Kleinschek K. Functional wound dressing materials with highly tunable drug release properties. RSC Adv. 2015;5(95):77873–84. https://doi.org/10.1039/C5RA11972C.

    Article  CAS  Google Scholar 

  13. Elias PM, Wakefield JS. Skin barrier function. Nutrition for healthy skin. Berlin: Springer; 2010. p. 35–48.

    Book  Google Scholar 

  14. Kurabayashi H, Tamura K, Machida I, Kubota K. Inhibiting bacteria and skin pH in hemiplegia: effects of washing hands with acidic mineral water. Am J Phys Med Rehabil. 2002;81(1):40–6.

    Article  Google Scholar 

  15. Schneider L, Korber A, Grabbe S, Dissemond J. Influence of pH on wound-healing: a new perspective for wound-therapy? Arch Dermatol Res. 2007;298(9):413–20.

    Article  Google Scholar 

  16. Lengheden A, Jansson L. pH effects on experimental wound healing of human fibroblasts in vitro. Eur J Oral Sci. 1995;103(3):148–55.

    Article  CAS  Google Scholar 

  17. Trengove NJ, Stacey MC, MacAuley S, Bennett N, Gibson J, Burslem F, et al. Analysis of the acute and chronic wound environments: the role of proteases and their inhibitors. Wound Repair Regen. 1999;7(6):442–52.

    Article  CAS  Google Scholar 

  18. O'Meara S, Cullum N, Majid M, Sheldon T. Systematic reviews of wound care management:(3) antimicrobial agents for chronic wounds;(4) diabetic foot ulceration. Health Technol Assess (Winch, Eng). 2000;4(21):1–237.

    CAS  Google Scholar 

  19. Stewart CM, Cole MB, Legan JD, Slade L, Vandeven MH, Schaffner DW. Staphylococcus aureus growth boundaries: moving towards mechanistic predictive models based on solute-specific effects. Appl Environ Microbiol. 2002;68(4):1864–71.

    Article  CAS  Google Scholar 

  20. Thomas LV, Wimpenny JW, Davis JG. Effect of three preservatives on the growth of Bacillus cereus, Vero cytotoxigenic Escherichia coli and Staphylococcus aureus, on plates with gradients of pH and sodium chloride concentration. Int J Food Microbiol. 1993;17(4):289–301.

    Article  CAS  Google Scholar 

  21. Lipsky BA, Berendt AR, Deery HG, Embil JM, Joseph WS, Karchmer AW, et al. Diagnosis and treatment of diabetic foot infections. Clin Infect Dis. 2004;39(7):885–910. https://doi.org/10.1086/424846.

    Article  PubMed  Google Scholar 

  22. Mahadevan SV, Garmel GM. An introduction to clinical emergency medicine. Cambridge: Cambridge University Press; 2012.

    Book  Google Scholar 

  23. Tsukada K, Tokunaga K, Iwama T, Mishima Y. The pH changes of pressure ulcers related to the healing process of wounds. Wounds. 1992;4(1):16–20.

    Google Scholar 

  24. Obata Y, Takayama K, Okabe H, Nagai T. Effect of cyclic monoterpenes on percutaneous absorption in the case of a water-soluble drug (diclofenac sodium). Drug Des Deliv. 1990;6(4):319–28.

    CAS  PubMed  Google Scholar 

  25. Maver T, Gradišnik L, Kurečič M, Hribernik S, Smrke DM, Maver U, et al. Layering of different materials to achieve optimal conditions for treatment of painful wounds. Int J Pharm. 2017;529(1–2):576–88. https://doi.org/10.1016/j.ijpharm.2017.07.043.

    Article  CAS  PubMed  Google Scholar 

  26. Pivec T, Peršin Z, Kolar M, Maver T, Dobaj A, Vesel A, et al. Modification of cellulose non-woven substrates for preparation of modern wound dressings. Text Res J. 2014;84(1):96–112.

    Article  Google Scholar 

  27. Maver T, Maver U, Mostegel F, Grieser T, Spirk S, Smrke D, et al. Cellulose based thin films as a platform for drug release studies to mimick wound dressing materials. Cellulose. 2015;22(1):749–61. https://doi.org/10.1007/s10570-014-0515-9.

    Article  CAS  Google Scholar 

  28. Horvat G, Xhanari K, Finšgar M, Gradišnik L, Maver U, Knez Ž, et al. Novel ethanol-induced pectin–xanthan aerogel coatings for orthopedic applications. Carbohydr Polym. 2017;166:365–76. https://doi.org/10.1016/j.carbpol.2017.03.008.

    Article  CAS  PubMed  Google Scholar 

  29. Finšgar M, Uzunalić AP, Stergar J, Gradišnik L, Maver U. Novel chitosan/diclofenac coatings on medical grade stainless steel for hip replacement applications. Sci Rep. 2016;6:26653. https://doi.org/10.1038/srep26653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1–2):55–63.

    Article  CAS  Google Scholar 

  31. Dissemond J, Augustin M, Eming SA, Goerge T, Horn T, Karrer S, et al. Modern wound care - practical aspects of non-interventional topical treatment of patients with chronic wounds. J Dtsch Dermatol Ges. 2014;12(7):541–54. https://doi.org/10.1111/ddg.12351.

    Article  PubMed  Google Scholar 

  32. Powers JG, Morton LM, Phillips TJ. Dressings for chronic wounds. Dermatol Ther. 2013;26(3):197–206. https://doi.org/10.1111/dth.12055.

    Article  PubMed  Google Scholar 

  33. Peršin Z, Maver U, Pivec T, Maver T, Vesel A, Mozetič M, et al. Novel cellulose based materials for safe and efficient wound treatment. Carbohydr Polym. 2014;100:55–64. https://doi.org/10.1016/j.carbpol.2013.03.082.

    Article  CAS  PubMed  Google Scholar 

  34. Miyake A. The infrared spectrum of polyethylene terephthalate. I the effect of crystallization. J Polym Sci. 1959;38(134):479–95. https://doi.org/10.1002/pol.1959.1203813419.

    Article  CAS  Google Scholar 

  35. Thu HE, Zulfakar MH, Ng SF. Alginate based bilayer hydrocolloid films as potential slow-release modern wound dressing. Int J Pharm. 2012;434(1–2):375–83. https://doi.org/10.1016/j.ijpharm.2012.05.044.

    Article  CAS  PubMed  Google Scholar 

  36. Yates CC, Whaley D, Babu R, Zhang J, Krishna P, Beckman E, et al. The effect of multifunctional polymer-based gels on wound healing in full thickness bacteria-contaminated mouse skin wound models. Biomaterials. 2007;28(27):3977–86.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Prof. Dr. Elsa Fabbretti for kindly providing us HACAT cells.

Funding

This study received financial support from the Slovenian Research Agency for Research Core Funding No. P2-0118, P3-0036 and P3-0371 and the financial support through Project No. Z2-8168.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tina Maver, Karin Stana Kleinschek or Uroš Maver.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maver, T., Gradišnik, L., Smrke, D.M. et al. Systematic Evaluation of a Diclofenac-Loaded Carboxymethyl Cellulose-Based Wound Dressing and Its Release Performance with Changing pH and Temperature. AAPS PharmSciTech 20, 29 (2019). https://doi.org/10.1208/s12249-018-1236-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-018-1236-4

KEY WORDS

Navigation