Skip to main content

Advertisement

Log in

Enhanced Oral Delivery of Curcumin via Vitamin E TPGS Modified Nanodiamonds: a Comparative Study on the Efficacy of Non-covalent and Covalent Conjugated Strategies

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Despite that either non-covalent or covalent attachment of hydrophilic polymers or surfactants onto nanodiamonds (NDs) could overcome the shortcomings of being a drug delivery system, it is hard to draw a definite conclusion which strategy is more effective. Hence, with the purpose of comparing the influence of different coating approach of NDs on the oral delivery efficiency of water-insoluble model drug curcumin (CUR), NDs were firstly modified with d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) via non-covalent or covalent conjugation method, and then loaded with CUR (CUR@NDs-COOH/TPGS or CUR@NDs-TPGS). In comparison with the core-shell-structured CUR@NDs-COOH/TPGS, CUR@NDs-TPGS were irregular in shape with dense TPGS film, and exhibited smaller size, more negatively potential, and higher drug loading efficiency. The covalent connection group also showed higher anti-cancer activity, cellular uptake, and permeability through the Caco-2 cell monolayers, as well as favorable distribution, penetration, and retention in rat intestines. The oral bioavailability study in rats demonstrated that CUR@NDs-TPGS showed significantly greater Cmax and AUC0−t in contrast with CUR suspension and the TPGS-coated ones, respectively. The findings illustrated that covalent grafting TPGS onto the surface of NDs possesses better efficacy and biocompatibility on oral delivery of poorly soluble drug CUR than pristine and non-covalent coated nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mark C, Pierstorff ED, Robert L, Shu-You L, Houjin H, Eiji O, et al. Nanodiamond-mediated delivery of water-insoluble therapeutics. ACS Nano. 2009;3(7):2016–22.

    Google Scholar 

  2. Whitlow J, Pacelli S, Paul A. Multifunctional nanodiamonds in regenerative medicine: recent advances and future directions. J Control Release. 2017;261:62–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Tinwala H, Wairkar S. Production, surface modification and biomedical applications of nanodiamonds: a sparkling tool for theranostics. Mat Sci Eng C-Mater. 2019;97:913–31.

    CAS  Google Scholar 

  4. Cheng B, Pan H, Liu D, Li D, Li J, Yu S, et al. Functionalization of nanodiamond with vitamin E TPGS to facilitate oral absorption of curcumin. Int J Pharm. 2018;540(1–2):162–70.

    CAS  PubMed  Google Scholar 

  5. Zhang Z, Ma L, Jiang S, Liu Z, Huang J, Chen L, et al. A self-assembled nanocarrier loading teniposide improves the oral delivery and drug concentration in tumor. J Control Release. 2013;166(1):30–7.

    CAS  PubMed  Google Scholar 

  6. Schrand AM, Dai L, Schlager JJ, Hussain SM, Osawa E. Differential biocompatibility of carbon nanotubes and nanodiamonds. Diam Relat Mater. 2007;16(12):2118–23.

    CAS  Google Scholar 

  7. Chu Z, Miu K, Lung P, Zhang S, Zhao S, Chang HC, et al. Rapid endosomal escape of prickly nanodiamonds: implications for gene delivery. Sci Rep. 2015;5:11661.

    PubMed  PubMed Central  Google Scholar 

  8. Xiao J, Duan X, Yin Q, Zhang Z, Yu H, Li Y. Nanodiamonds-mediated doxorubicin nuclear delivery to inhibit lung metastasis of breast cancer. Biomaterials. 2013;34(37):9648–56.

    CAS  PubMed  Google Scholar 

  9. Shi Y, Liu M, Wang K, Huang H, Wan Q, Tao L, et al. Direct surface PEGylation of nanodiamond via RAFT polymerization. Appl Surf Sci. 2015;357:2147–53.

    CAS  Google Scholar 

  10. Lim DG, Prim RE, Kim KH, Kang E, Park K, Jeong SH. Combinatorial nanodiamond in pharmaceutical and biomedical applications. Int J Pharm. 2016;514(1):41–51.

    CAS  PubMed  Google Scholar 

  11. Neburkova J, Vavra J, Cigler P. Coating nanodiamonds with biocompatible shells for applications in biology and medicine. Curr Opin Solid State Mater Sci. 2017;21(1):43–53.

    CAS  Google Scholar 

  12. Maheshwari RK, Singh AK, Gaddipati J, Srimal RC. Multiple biological activities of curcumin: a short review. Life Sci. 2006;78(18):2081–7.

    CAS  PubMed  Google Scholar 

  13. Ma Z, Na W, He H, Tang X. Pharmaceutical strategies of improving oral systemic bioavailability of curcumin for clinical application. J Control Release. 2019;316:359–80.

    CAS  PubMed  Google Scholar 

  14. Fan N, Lu T, Li J. Surface tracking of curcumin amorphous solid dispersions formulated by binary polymers. J Pharm Sci. 2020;109(2):1068–78.

    CAS  PubMed  Google Scholar 

  15. Li X, Shao J, Qin Y, Shao C, Zheng T, Ye L. TAT-conjugated nanodiamond for the enhanced delivery of doxorubicin. J Mater Chem. 2011;21(22):7966–73.

    CAS  Google Scholar 

  16. Liu KK, Zheng WW, Wang CC, Chiu YC, Cheng CL, Lo YS, et al. Covalent linkage of nanodiamond-paclitaxel for drug delivery and cancer therapy. Nanotechnology. 2010;21(31):315106.

    PubMed  Google Scholar 

  17. Zhang Z, Niu B, Chen J, He X, Bao X, Zhu J, et al. The use of lipid-coated nanodiamond to improve bioavailability and efficacy of sorafenib in resisting metastasis of gastric cancer. Biomaterials. 2014;35(15):4565–72.

    CAS  PubMed  Google Scholar 

  18. Chen M, Pierstorff ED, Lam R, Li SY, Huang H, Osawa E, et al. Nanodiamond-mediated delivery of water-insoluble therapeutics. ACS Nano. 2009;3(7):2016–22.

    CAS  PubMed  Google Scholar 

  19. Wang J, Ma W, Tu P. The mechanism of self-assembled mixed micelles in improving curcumin oral absorption: in vitro and in vivo. Colloid Surface B. 2015;133:108–19.

    CAS  Google Scholar 

  20. Liu D, Li J, Pan H, He F, Liu Z, Wu Q, et al. Potential advantages of a novel chitosan-N- acetylcysteine surface modified nanostructured lipid carrier on the performance of ophthalmic delivery of curcumin. Sci Rep. 2016;6:28796.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Zou T, Gu L. TPGS emulsified zein nanoparticles enhanced oral bioavailability of daidzin: in vitro characteristics and in vivo performance. Mol Pharm. 2013;10(5):2062–70.

    CAS  PubMed  Google Scholar 

  22. Lian H, Zhang T, Sun J, Liu X, Ren G, Kou L, et al. Enhanced oral delivery of paclitaxel using acetylcysteine functionalized chitosan-vitamin E succinate nanomicelles based on a mucus bioadhesion and penetration mechanism. Mol Pharm. 2013;10(9):3447–58.

    CAS  PubMed  Google Scholar 

  23. Wu L, Man C, Wang H, Lu X, Ma Q, Cai Y, et al. PEGylated multi-walled carbon nanotubes for Encapsulation and Sustained Release of Oxaliplatin. Pharm Res. 2013;30(2):412–23.

    CAS  PubMed  Google Scholar 

  24. Lim DG, Rajasekaran N, Lee D, Kim NA, Jung HS, Hong S, et al. Polyamidoamine-decorated nanodiamonds as a hybrid gene delivery vector and siRNA structural characterization at the charged interfaces. ACS Appl Mater Interfaces. 2017;9(37):31543–56.

    CAS  PubMed  Google Scholar 

  25. Pooja D, Kulhari H, Singh MK, Mukherjee S, Rachamalla SS, Sistla R. Dendrimer-TPGS mixed micelles for enhanced solubility and cellular toxicity of taxanes. Colloid Surface B. 2014;121(9):461–8.

    CAS  Google Scholar 

  26. Lu J, Wang YH, Zang JB, Li YN. Protective silicon coating for nanodiamonds using atomic layer deposition. Appl Surf Sci. 2007;253(7):3485–8.

    CAS  Google Scholar 

  27. Lim DG, Jung JH, Ko HW, Kang E, Jeong SH. Paclitaxel-nanodiamond nanocomplexes enhance aqueous dispersibility and drug retention in cells. ACS Appl Mater Interfaces. 2016;8(36):23558–67.

    CAS  PubMed  Google Scholar 

  28. Zeng Z, Shen ZL, Zhai S, Xu JL, Liang H, Shen Q. et al, Transport of curcumin derivatives in Caco-2 cell monolayers. Eur J Pharm Biopharm. 2017;117(123):–31.

  29. He S, Yang H, Zhang R, Li Y, Duan L. Preparation and in vitro–in vivo evaluation of teniposide nanosuspensions. Int J Pharm. 2015;478(1):131–7.

    CAS  PubMed  Google Scholar 

  30. Xing Y, Xiong W, Zhu L, Osawa E, Hussin S, Dai L. DNA damage in embryonic stem cells caused by nanodiamonds. ACS Nano. 2011;5(3):2376–84.

    CAS  PubMed  Google Scholar 

  31. Feng T, Wei Y, Lee RJ, Zhao L. Liposomal curcumin and its application in cancer. Int J Nanomed. 2017;12:6027–44.

    CAS  Google Scholar 

  32. Pereira AG, Fajardo AR, Nocchi S, Nakamura CV, Rubira AF, Muniz EC. Starch-based microspheres for sustained-release of curcumin: preparation and cytotoxic effect on tumor cells. Carbohydr Polym. 2013;98(1):711–20.

    CAS  PubMed  Google Scholar 

  33. Peng H, Gan Z, Xiong H, Luo M, Yu N, Wen T, et al. Self-assembly of protein nanoparticles from rice bran waste and their use as delivery system for curcumin. ACS Sustain Chem Eng. 2017;5(8):6605–14.

    CAS  Google Scholar 

  34. Manju S, Sreenivasan K. Enhanced drug loading on magnetic nanoparticles by layer-by-layer assembly using drug conjugates: blood compatibility evaluation and targeted drug delivery in cancer cells. Langmuir. 2011;27(23):14489–96.

    CAS  PubMed  Google Scholar 

  35. Zhang B, Feng X, Yin H, Ge Z, Wang Y, Chu Z, et al. Anchored but not internalized: shape dependent endocytosis of nanodiamond. Sci Rep. 2017;7:46462.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Banerjee A, Qi J, Gogoi R, Wong J, Mitragotri S. Role of nanoparticle size, shape and surface chemistry in oral drug delivery. J Control Release. 2016;238:176–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. He C, Yin L, Tang C, Yin C. Size-dependent absorption mechanism of polymeric nanoparticles for oral delivery of protein drugs. Biomaterials. 2012;33(33):8569–78.

    CAS  PubMed  Google Scholar 

  38. Chunbai H, Yiping H, Lichen Y, Cui T, Chunhua Y. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010;31(13):3657–66.

    Google Scholar 

  39. Patil S, Sandberg A, Heckert E, Self W, Seal S. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials. 2007;28(31):4600–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Monika K, Chi-Hsien L, Wei-Chi W. Protien moiety in oligochitosan modified vector regulates internalization mechanism and gene delivery: polyplex characterization, intracellular trafficking and transfection. Carbohydr Polym. 2018;202:143–56.

    Google Scholar 

  41. López-Lázaro M. Anticancer and carcinogenic properties of curcumin: considerations for its clinical development as a cancer chemopreventive and chemotherapeutic agent. Mol Nutr Food Res. 2008;52(S1):S103–27.

    PubMed  Google Scholar 

  42. Riachi C, Schüwer N, Klok H-A. Degradable polymer brushes prepared via surface-initiated controlled radical polymerization. Macromolecules. 2009;42(21):8076–81.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 81773670), and the Liaoning Provincial Natural Science Foundation of China (No. 20180550369).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Pan or Weisan Pan.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOC 177 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Qiao, S., Cheng, B. et al. Enhanced Oral Delivery of Curcumin via Vitamin E TPGS Modified Nanodiamonds: a Comparative Study on the Efficacy of Non-covalent and Covalent Conjugated Strategies. AAPS PharmSciTech 21, 187 (2020). https://doi.org/10.1208/s12249-020-01721-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01721-0

KEY WORDS

Navigation