Skip to main content

Advertisement

Log in

Overdose and Alcohol Sensitive Immediate Release System (OASIS) for Deterring Accidental Overdose or Abuse of Drugs

  • Research Article
  • Theme: Pharmaceutical Thermal Processing - An Update
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Death from an accidental or intentional overdose of sleeping tablets has increased exponentially in the USA. Furthermore, the simultaneous consumption of sleeping tablets with alcoholic beverages not only intensifies the effect of sleeping tablets but also leads to blackouts, sleepwalking, and death in many cases. In this article, we proposed a unique and innovative technology to prevent multi-tablet and alcohol-associated abuse of sleeping tablet. Agonist- and antagonist-loaded polymeric filaments of appropriate Eudragit® polymers were prepared using hot melt extrusion. Metoprolol tartrate and hydrochlorothiazide were used as model drugs in place of zolpidem tartrate (agonist-BCS class I) and flumazenil (antagonist-BCS class IV), respectively. Crushed filaments were converted into a tablet with a novel rapidly soluble co-processed alkalizing agent. Dissolution studies of single tablet and multiple tablets (5) in fasted state simulated gastric fluid (FaSSGF) confirmed that the release of the agonist was significantly (p < 0.0001) reduced in multi-tablet dissolution. Furthermore, the release of antagonist was significantly higher when tablet was exposed to FaSSGF+20% ethanol and various alcoholic beverages. Thus, appropriate use of Eudragit® polymer’s chemistry could help design a tablet to prevent the release of agonist in case of overdose and simultaneous release of antagonist when consumed with alcohol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Colten HR, Altevogt BM. Extent and health consequences of chronic sleep loss and sleep disorders. Sleep disorders and sleep deprivation: an unmet public health problem 2006:55–135.

  2. Ram S, Seirawan H, Kumar SK, Clark GT. Prevalence and impact of sleep disorders and sleep habits in the United States. Sleep Breath. 2010;14(1):63–70.

    PubMed  Google Scholar 

  3. Siriwardena AN, Qureshi MZ, Dyas JV, Middleton H, Orner R. Magic bullets for insomnia? Patients’ use and experiences of newer (Z drugs) versus older (benzodiazepine) hypnotics for sleep problems in primary care. Br J Gen Pract. 2008;58(551):417–22.

    PubMed  PubMed Central  Google Scholar 

  4. Bertisch SM, Herzig SJ, Winkelman JW, Buettner C. National use of prescription medications for insomnia: NHANES 1999-2010. Sleep. 2014;37(2):343–9.

    PubMed  PubMed Central  Google Scholar 

  5. Poceta JS. Zolpidem ingestion, automatisms, and sleep driving: a clinical and legal case series. J Clin Sleep Med. 2011;7(6):632–8.

    PubMed  PubMed Central  Google Scholar 

  6. Huang CL, Chang CJ, Hung CF, Lin HY. Zolpidem-induced distortion in visual perception. Ann Pharmacother. 2003;37(5):683–6.

    PubMed  Google Scholar 

  7. Zisser H, Rivera SC, Lane J. Zolpidem-induced sleep-eating resulting in significant hyperglycemia in a subject with type 1 diabetes discovered via continuous glucose monitoring. Clinical Diabetes. 2013;31(3):133–5.

    Google Scholar 

  8. Mortaz Hejri S, Faizi M, Babaeian M. Zolpidem-induced suicide attempt: a case report. Daru. 2013;21(1):77.

    PubMed  PubMed Central  Google Scholar 

  9. Park LT, Matthews JD, Maytal G, Stern TA. Evaluation and treatment of poor sleep. Prim Care Companion J Clin Psychiatry. 2007;9(3):224–9.

    PubMed  PubMed Central  Google Scholar 

  10. Heydari M, Isfeedvajani MS. Zolpidem dependence, abuse and withdrawal: a case report. J Res Med Sci. 2013;18(11):1006–7.

    PubMed  PubMed Central  Google Scholar 

  11. Victorri-Vigneau C, Dailly E, Veyrac G, Jolliet P. Evidence of zolpidem abuse and dependence: results of the French Centre for Evaluation and Information on Pharmacodependence (CEIP) network survey. Br J Clin Pharmacol. 2007;64(2):198–209.

    PubMed  PubMed Central  Google Scholar 

  12. Bouvier BA, Waye KM, Elston B, Hadland SE, Green TC, Marshall BDL. Prevalence and correlates of benzodiazepine use and misuse among young adults who use prescription opioids non-medically. Drug Alcohol Depend. 2018;183:73–7.

    CAS  PubMed  Google Scholar 

  13. Schifano F, Chiappini S, Corkery JM, Guirguis A. An insight into Z-drug abuse and dependence: an examination of reports to the European Medicines Agency database of suspected adverse drug reactions. Int J Neuropsychopharmacol. 2019;22(4):270–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lovett B, Watts D, Grossman M. Prolonged coma after eszopiclone overdose. Am J Emerg Med. 2007;25(6):735 e5–6.

    Google Scholar 

  15. Louis CJ, Fernandez B, Beaumont C, Pinillos MA, Bardom A, Encina Y. A case of zaleplon overdose. Clin Toxicol (Phila). 2008;46(8):782.

    Google Scholar 

  16. Kuzniar TJ, Balagani R, Radigan KA, Factor P, Mutlu GM. Coma with absent brainstem reflexes resulting from zolpidem overdose. Am J Ther. 2010;17(5):e172–4.

    PubMed  Google Scholar 

  17. Reports C. The problem with sleeping pills 2018 [Available from: https://www.consumerreports.org/drugs/the-problem-with-sleeping-pills/#guide.

  18. Jones CM, Mack KA, Paulozzi LJ. Pharmaceutical overdose deaths, United States, 2010. JAMA. 2013;309(7):657–9.

    CAS  PubMed  Google Scholar 

  19. Kripke DF. Hypnotic drug risks of mortality, infection, depression, and cancer: but lack of benefit. F1000Res. 2016;5:918.

    PubMed  Google Scholar 

  20. Maxwell JC. Trends in the abuse of prescription drugs: Gulf Coast Addiction Technology Transfer Center The University of Texas at Austin: Gulf Coast Addiction Technology Transfer Center; 2006.

  21. Meruva S, Donovan MD. Effects of drug-polymer interactions on tablet properties during the development of abuse-deterrent dosage forms. AAPS PharmSciTech. 2019;20(3):93.

    CAS  PubMed  Google Scholar 

  22. Meruva S, Donovan MD. Polyethylene oxide (PEO) molecular weight effects on abuse-deterrent properties of matrix tablets. AAPS PharmSciTech. 2019;21(1):28.

    PubMed  Google Scholar 

  23. Weaver MF. Prescription sedative misuse and abuse. Yale J Biol Med. 2015;88(3):247–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chopra N, Rayapati A, Patel A. Potentiating the adverse effects of zolpidem in a patient with alcohol dependence and SSRI use. Clin Med Rev Case Rep. 2015;2:044.

    Google Scholar 

  25. Gunja N. The clinical and forensic toxicology of Z-drugs. J Med Toxicol. 2013;9(2):155–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zosel A, Osterberg EC, Mycyk MB. Zolpidem misuse with other medications or alcohol frequently results in intensive care unit admission. Am J Ther. 2011;18(4):305–8.

    PubMed  Google Scholar 

  27. de Haas S, Dingemanse J, Hoever P, Cohen A, van Gerven J. Pseudohallucinations after zolpidem intake: a case report. J Clin Psychopharmacol. 2007;27(6):728–30.

    PubMed  Google Scholar 

  28. Hoque R, Chesson AL Jr. Zolpidem-induced sleepwalking, sleep related eating disorder, and sleep-driving: fluorine-18-flourodeoxyglucose positron emission tomography analysis, and a literature review of other unexpected clinical effects of zolpidem. J Clin Sleep Med. 2009;5(5):471–6.

    PubMed  PubMed Central  Google Scholar 

  29. Mehta AM, inventor Abuse-resistant oral dosage forms and method of use thereof 2012.

  30. Vaka SRK, Chatterji A, Desai D, Phuapradit W, Shah NH, Tohngsukmak A, et al., inventors; Google patents, assignee. Abuse-resistant drug formulations with built-in overdose protection patent US 2016.0346274A1 2016 12/01/2016.

  31. Shah NH, Phuapradit W, Desai D, Vaka KSR, Meghpara K, Thongsukmak A, inventors; Google patents, assignee. Extended release drug formulation with overdose protection and abuse deterrence patent US 20190282508A1. 2019.

  32. Albert W. Brzeczko R, GA (US);, R. Gary Hollenbeck EC, MD, (US), inventors Methods and compositions for self-regulated release of active pharmaceutical ingredient patent US9101636B2. 2015.

  33. Patat A, Naef MM, van Gessel E, Forster A, Dubruc C, Rosenzweig P. Flumazenil antagonizes the central effects of zolpidem, an imidazopyridine hypnotic. Clin Pharmacol Ther. 1994;56(4):430–6.

    CAS  PubMed  Google Scholar 

  34. Weinbroum AA, Flaishon R, Sorkine P, Szold O, Rudick V. A risk-benefit assessment of flumazenil in the management of benzodiazepine overdose. Drug Saf. 1997;17(3):181–96.

    CAS  PubMed  Google Scholar 

  35. Nukala PK, Palekar S, Solanki N, Fu Y, Patki M, Shohatee AA, et al. Investigating the application of FDM 3D printing pattern in preparation of patient-tailored dosage forms. J 3D Print Med. 2019;3(1):23–37.

    CAS  Google Scholar 

  36. Ono A, Tomono T, Ogihara T, Terada K, Sugano K. Investigation of biopharmaceutical and physicochemical drug properties suitable for orally disintegrating tablets. ADMET and DMPK. 2016;4(4):335–60.

    Google Scholar 

  37. Patki M, Patel K. Development of a solid supersaturated self-nanoemulsifying preconcentrate (S-superSNEP) of fenofibrate using dimethylacetamide and a novel co-processed excipient. Drug Dev Ind Pharm. 2019;45(3):405–14.

    CAS  PubMed  Google Scholar 

  38. Otsuka K, Shono Y, Dressman J. Coupling biorelevant dissolution methods with physiologically based pharmacokinetic modelling to forecast in-vivo performance of solid oral dosage forms. J Pharm Pharmacol. 2013;65(7):937–52.

    CAS  PubMed  Google Scholar 

  39. Nukala PK, Palekar S, Patki M, Fu Y, Patel K. Multi-dose oral abuse deterrent formulation of loperamide using hot melt extrusion. Int J Pharm. 2019;569:118629.

    CAS  PubMed  Google Scholar 

  40. Health NIo. National Institute on Alcohol Abuse and Alcoholism.

  41. Xie T, Gao W, Taylor LS. Impact of Eudragit EPO and hydroxypropyl methylcellulose on drug release rate, supersaturation, precipitation outcome and redissolution rate of indomethacin amorphous solid dispersions. Int J Pharm. 2017;531(1):313–23.

    CAS  PubMed  Google Scholar 

  42. Singh AP, Siddiqui J, Diosady LL. Characterizing the pH-dependent release kinetics of food-grade spray drying encapsulated iron microcapsules for food fortification. Food Bioprocess Technol. 2018;11(2):435–46.

    Google Scholar 

  43. Dave VS, Fahmy RM, Bensley D, Hoag SW. Eudragit((R)) RS PO/RL PO as rate-controlling matrix-formers via roller compaction: influence of formulation and process variables on functional attributes of granules and tablets. Drug Dev Ind Pharm. 2012;38(10):1240–53.

    CAS  PubMed  Google Scholar 

  44. Zhu Y, Mehta KA, McGinity JW. Influence of plasticizer level on the drug release from sustained release film coated and hot-melt extruded dosage forms. Pharm Dev Technol. 2006;11(3):285–94.

    CAS  PubMed  Google Scholar 

  45. Boyapally H, Nukala RK, Douroumis D. Development and release mechanism of diltiazem HCl prolonged release matrix tablets. Drug Deliv. 2009;16(2):67–74.

    CAS  PubMed  Google Scholar 

  46. Lee YS, Song JG, Lee SH, Han HK. Sustained-release solid dispersion of pelubiprofen using the blended mixture of aminoclay and pH independent polymers: preparation and in vitro/in vivo characterization. Drug Deliv. 2017;24(1):1731–9.

    CAS  PubMed  Google Scholar 

  47. Gumaste SG, Pawlak SA, Dalrymple DM, Nider CJ, Trombetta LD, Serajuddin AT. Development of solid SEDDS, IV: effect of adsorbed lipid and surfactant on tableting properties and surface structures of different silicates. Pharm Res. 2013;30(12):3170–85.

    CAS  PubMed Central  Google Scholar 

  48. Kalamkar R, Wadher S. Formulation and pharmacokinetic evaluation of phosal based zaltoprofen solid self-nanoemulsifying drug delivery system. Pharm Nanotechnol. 2019.

  49. Khanna A, Kurtzman NA. Metabolic alkalosis. J Nephrol. 2006;19(Suppl 9):S86–96.

    CAS  PubMed  Google Scholar 

  50. SODIUM Bicarbonate- sodium bicarbonate tablet [Internet]. Ingenus Pharmaceuticals NJ, LLC. 2011 [cited 07/05/2019]. Available from: https://dailymed.nlm.nih.gov/dailymed/fda/fdaDrugXsl.cfm?setid=3cb67478-1a51-4e7d-a529-79029655f5d9&type=display. Accessed 8 Jan 2019.

  51. D’Souza S, Mayock S, Salt A. A review of in vivo and in vitro aspects of alcohol-induced dose dumping. AAPS Open. 2017;3(1):1–20.

    Google Scholar 

  52. Jedinger N, Khinast J, Roblegg E. The design of controlled-release formulations resistant to alcohol-induced dose dumping--a review. Eur J Pharm Biopharm. 2014;87(2):217–26.

    CAS  PubMed  Google Scholar 

  53. Jedinger N, Schrank S, Fischer JM, Breinhalter K, Khinast J, Roblegg E. Development of an abuse- and alcohol-resistant formulation based on hot-melt extrusion and film coating. AAPS PharmSciTech. 2016;17(1):68–77.

    CAS  PubMed  Google Scholar 

  54. Nukala PK, Palekar S, Patki M, Patel K. Abuse deterrent immediate release egg-shaped tablet (egglets) using 3D printing technology: quality by design to optimize drug release and extraction. AAPS PharmSciTech. 2019;20(2):80.

    CAS  PubMed  Google Scholar 

  55. Shah NH, Phuapradit W, Desai D, Vaka SRK, Meghpara K, Thongsukmak A, inventors; Google patents, assignee. Food independent immediate release drug formulation with abuse deterrence and overdose protection. USA patent US 20180296486A1 2018 october 18th 2018.

  56. Shah NH, Phuapradit W, Desai D, Vaka SRK, Meghpara K, inventors; Google patents, assignee. Overdose protection and abuse deterrent immediate release drug formulation patent US 20190054031A1 2019 02/21/2019.

  57. Rohsenow DJ, Howland J. The role of beverage congeners in hangover and other residual effects of alcohol intoxication: a review. Curr Drug Abuse Rev. 2010;3(2):76–9.

    CAS  PubMed  Google Scholar 

  58. Suzuki K, Nemoto A, Tanaka I, Koshimizu S, Suwa Y, Ishihara H. Induction of heme oxygenase-1 by whisky congeners in human endothelial cells. J Food Sci. 2010;75(6):H163–6.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Evonik Industries, BASF, Asahi Kasei, and Tomita Pharmaceutical for kindly supplying the samples of excipients used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ketankumar Patel.

Ethics declarations

Disclosure Statement

No potential conflict of interest was reported by the authors.

Additional information

Guest Editors: Feng Zhang, Michael Repka and Suresh Bandari

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 3998 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patki, M., Palekar, S., Nukala, P.K. et al. Overdose and Alcohol Sensitive Immediate Release System (OASIS) for Deterring Accidental Overdose or Abuse of Drugs. AAPS PharmSciTech 22, 9 (2021). https://doi.org/10.1208/s12249-020-01879-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01879-7

KEY WORDS

Navigation