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In previous papers formulas have been derived describing distribution of a random variable whose values
are positions of an oscillator at the moment t, which, in the interval [0, t], underwent the influence of stochastic
impulses with a given distribution. In this paper we present reasoning leading to an opposite inference thanks
to which, knowing the course of the oscillator, we can find the approximation of distribution of stochastic
impulses acting on it. It turns out that in the case of an oscillator with damping the stochastic process ξt of
its deviations at the moment t is a stationary and ergodic process for large t. Thanks to this, time average of
almost every trajectory of the process, which is the n-th power of ξt is very close to the mean value of ξn

t in
space for sufficiently large t. Thus, having a course of a real oscillator and theoretical formulae for the charac-
teristic function ξt we are able to calculate the approximate distribution of stochastic impulses forcing the oscillator.

PACS numbers: 45.10.−b, 45.30+s

1. Introduction

In the papers [1, 2] we considered mechanical systems
such as oscillator and string and analyzed their response
to impulses whose magnitude as well as the place and
moment of action were random. There we derived the-
oretical formulas regarding the mean value and variance
of positions of the point of a given mechanical system as
a function of statistical properties of these impulses. It
turns out that statistical behavior of a mechanical sys-
tem with damping or without damping is the same as the
behavior of the mechanical system subjected to action of
continuous forces equal to the mean value of impulses.
The derived formulas are consistent with computer sim-
ulations. However, in practical applications, for example
in control of a technological process, we need inverse de-
pendence, that is, we need distributions of stochastic im-
pulses as a function of the motion of a mechanical system.
In this paper we try to solve this problem.

We should remember that the stochastic process
{ξn

t , t ∈ R+} is stationary if for any k, any open subsets
A1, A2, . . .Ak of R and for any t1 < t2 < . . . < tk the
probability P (ξ−1

t1+h(A1), ξ−1
t1+h(A2), . . . , ξ−1

tk+h(Ak)) does
not depend on h. The stationary and stochastic process
is ergodic if for almost all ω in Ω limt→∞ 1

t

∫ t

0
ξs(ω)ds =∫ t

0
ξ0(ω)dω (the mean value over the space is the mean

value over time).
The previous papers suggest that we need to take large

probes of trajectories which start from positions equal to
zero to find statistical moments of considered motion. In
practice it is impossible to achieve. Fortunately, it turns

out that in the case of an oscillator with damping its
behavior tends to be an ergodic and stationary process.
Therefore we can take one sufficiently long trajectory of
the motion of this oscillator and get all the statistical
moments of the position of the considered oscillator at
moment t for large enough t. The statistical moments,
in turn, give us an approximation of distribution of im-
pulses, which allows us to control a technological process
or adjust the parameters of the oscillator. The formulas
for distributions are confirmed by computer simulations.

The first partial mathematical results regarding vibra-
tion of oscillators forced by stochastic impulses can be
found in the following works [3–15]. Monographs [16–
18] introduce the foundations of the considered problems.
Works [4, 5] include certain results concerning nonlinear
systems subjected to stochastic forces that might not act
in a continuous way.

2. Main results

Let us consider the differential equation of the forced
harmonic oscillator with damping

d2x

dt2
+ 2b

dx

dt
+ a2x = f(t), (1)

where 0 < b < a. The solution of the above equation
satisfying the following initial condition

x(0) = 0 (2)
and

ẋ(0) = 0 (3)
has the form

(74)
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x(t) =
1√

a2 − b2

∫ t

0

f(u) sin
(√

a2 − b2(t− u)
)

exp
(
b(t− u)

) du.(4)

If ηi is any sequence of real numbers, ti is any increasing
sequence of real numbers and f(t) is given by

f(t) =
∑
ti<t

ηiδti
, (5)

where δti
are δ-Dirac distributions at ti, then the solution

of (1), (2) (3) takes the following form

x(t) =
1√

a2 − b2

×
∑
ti<t

ηi exp(−b(t− ti)) sin
(√

a2 − b2(t− ti)
)

. (6)

Let ηi be independent and identically distributed random
variables with finite mean value and let τi = ti − ti−1,
i = 1, 2, . . . , be independent and identically distributed
random variables with exponential distribution F (u) =
1 − exp(−λu) for u > 0 and F (u) = 0 for u < 0 and for
some λ > 0. Applying to (1) Theorem 1 from [5] with
m = 1, h1 = 1 and function

g =
1√

a2 − b2

sin
(√

a2 − b2t
)

exp(bt)
, (7)

we get the characteristic function of random variable (6)

ϕ(s) = exp

(
λt

[ ∫ ∞

0

∫ 1

0

exp

(
isy

(
sin
√

a2 − b2tu
)

√
a2 − b2 exp(bt)

)

duφζ(dy)− 1

])
. (8)

This function allows us to find stochastic moments of
random variable x(t) of any rate from the following for-
mula

mn(t) = E(xn(t)) =
ϕ

(n)
t (0)
in

. (9)

Now we derive formulas for n-th derivative of ϕt(s). The
first derivative has the form

ϕ′t(s) = ϕt(s)λt

∫ ∞

0

∫ 1

0

(
iy sin

√
a2 − b2tu√

a2 − b2 exp(btu)

)

× exp

(
isy sin

√
a2 − b2tu√

a2 − b2 exp(btu)

)
duφη(dy). (10)

Knowing that

h(n) = (h1h2)(n) =
n∑

i=0

(
n

i

)
h

(n−i)
1 h

(i)
2 (11)

and setting
h1t(s) = ϕt(s) (12)

and

h2t(s) = λt

∫ ∞

0

∫ 1

0

(
iy sin

√
a2 − b2tu√

a2 − b2 exp(btu)

)

× exp

(
isy sin

√
a2 − b2tu√

a2 − b2 exp(btu)

)
duφη(dy), (13)

we get

(
ϕ′t(s)

)(n) =
n∑

j=0

(
n

j

)(
ϕt(s)

)(n−j)
λt

×
∫ ∞

0

∫ 1

0


 i(j+1)y(j+1) sin(j+1)

√
a2 − b2tu

(√
a2 − b2

)(j+1)
exp

(
(j + 1)btu

)




× exp

(
isy sin

√
a2 − b2tu√

a2 − b2 exp(btu)

)
duφη(dy). (14)

Setting in the last formula s = 0, and integrating with
respect to y we obtain

(
ϕ′t(0)

)(n) =
n∑

j=0

(
n

j

)(
ϕt(0)

)(n−j) λti(j+1)E
(
η(j+1)

)
(√

a2 − b2
)(j+1)

×
∫ 1

0

(
sin(j+1)

√
a2 − b2tu

exp ((j + 1)btu)

)
du. (15)

Dividing the last formula by sides by i(j+1) we get

mn+1(t) =
n∑

j=0

(
n

j

)
mn−j(t)

λtE
(
η(j+1)

)
(√

a2 − b2
)(j+1)

×
∫ 1

0

(
sin(j+1)

√
a2 − b2tu

exp ((j + 1)btu)

)
du. (16)

Substituting
√

a2 − b2tu = v in (16) we obtain

mn+1(t) =
n∑

j=0

(
n

j

)
mn−j(t)

λtE
(
η(j+1)

)
(√

a2 − b2
)(j+1)

×
∫ √

a2−b2t

0

(
sin(j+1) v

exp
(
(j + 1)bv/

√
a2 − b2

)
)

dv. (17)

Let us denote for brevity

c =
√

a2 − b2, (18)

ψjr(t) =
∫ ct

0

sinr v

exp(jbv/c)
dv (19)

and
ψj = ψjj . (20)

We show that there is limt→∞ ψj . To do this we use the
following formulae∫

eβx sinr(x)dx =
eβx sinr−1(x)

β2 + r2

(
β sin(x)− r cos(x)

)

+
r(r − 1)
β2 + r2

∫
eβx sinr−2(x)dx, (21)

∫
eβx dx =

eβx

β
, (22)

∫
eβx sin(x)dx =

eβx

β2 + r2

(
β sin(x)− cos(x)

)
, (23)

for any j (22) and (23) imply respectively

lim
t→∞

ψj1(t) =
1(

jb
c

)2

+ 1
, (24)
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lim
t→∞

ψj0(t) =
c

jb
(25).

Moreover, from (21) for j > 1 and r > 1 we get

lim
t→∞

ψjr(t) =
sin(r−1) v

exp(jbv/c)
(
(jb/c)2 + r2

)

×
((−jb

c

)2

sin(v)− r cos(v)

)∣∣∣∣∣

ct

0

+
r(r − 1)

(jb/c)2 + r2

∫ ct

0

sin(r−2) v

exp(jbv/c)
dv. (26)

Equality (26) for r > 1 and j > 1 implies

lim
t→∞

ψjr(t) =
r(r − 1)

(jb/c)2 + r2
lim

t→∞
ψj(r−2)(t). (27)

From (24), (25) and (27) for j even and j > 1 we obtain

lim
t→∞

ψj(t) =
j!∏j/2−1

r=0

(
(jb/c)2 + (j − 2r)2

) lim
t→∞

ψj0(t)

=
j!∏j/2−1

r=0

(
(jb/c)2 + (2r)2

) c

jb
, (28)

whereas for odd j

lim
t→∞

ψj(t)

=
j!∏(j−1)/2−1

r=0

(
(jb/c)2 + (j − 2r)2

) lim
t→∞

ψj1(t)

=
j!∏(j−1)/2−1

r=0

(
(jb/c)2 + (2r + 1)2

) . (29)

Knowing that
m0 = lim

t→∞
ϕt(0) = 1, (30)

using (17), (28) and (29) we can prove by induction that
for any n ≥ 0 there is limit

lim
t→∞

ϕ
(n)
t (0)
in

= lim
t→∞

mn(t) = mn. (31)

Moreover, for n ≥ 0 we obtain the following equations

mn+1 =
n∑

j=0

(
n

j

)
m(n−j)

λE
(
η(j+1)

)

c2+j
C(j + 1), (32)

where C(j) = limt→∞ ψj(t) for j ≥ 0.
By (32) for n = 0 we have

m1 = m0
λE(η)C(1)

c2
=

λE(η)C(1)
c2

. (33)

Hence

λ =
m1c

2

E(η)C(1)
. (34)

Substituting this for λ in the formula (32) we get for any
n > 0

mn+1 =
n∑

j=0

(
n

j

)
m(n−j)

E
(
η(j+1)

)

c2+j

×C(j + 1)
m1c

2

C(1)E(η)
. (35)

Multiplying the above equation by E(η) by sides we get

n∑

j=0

(
n

j

)
m(n−j)m1E

(
η(j+1)

) C(j + 1)
C(1)cj

−mn+1E(η) = 0. (36)
Now we can write

(mnm1 −mn+1)E(η)

+
n∑

j=1

(
n

j

)
m(n−j)m1E

(
η(j+1)

) C(j + 1)
C(1)cj

= 0. (37)

If random variable η assumes a finite number of known
values {x1, x2, . . . , xk} with unknown probabilities pj =
P (η = xj) for n = 1, 2, . . . , k, then the Eq. (37) for
0 < n < k with obvious equality

m0 = 1 =
k∑

j=1

pj (38)

allows us to find distribution pj when mn are known.
Since E(η) =

∑k
i=1 ηipi Eq. (37) is equivalent to

k∑

i=1

pi

[
(mnm1 −mn+1)ηi

+
n∑

j=1

(
n

j

)
m(n−j)m1η

(j+1) C(j + 1)
C(1)cj

]
= 0. (39)

Set
ani = (mnm1 −mn+1)ηi

+
n∑

j=1

(
n

j

)
m(n−j)m1η

(j+1) C(j + 1)
C(1)cj

, (40)

for n = 1, 2, . . . , k − 1 and i = 1, 2, . . . , k and
aki = 1, (41)

for i = 1, 2, . . . k.
To find pi it is enough now to solve the following equa-

tion
AP = Y (42)

where Y = (0, 0, . . . , 0, 1) and P = (p1, p2, . . . , pk).
In practice we can calculate values mk taking the mean

value of the k-th powers of the measured oscillator’s po-
sitions and using ergodicity of the process x(t) that is
using the formula

E
(
x(t)

) ∼= 1
k

k∑

i=1

x

(
ti

k

)
(43)

which is valid for large t and k.
If we add to Eq. (37)two additional equations for n = k

and n = k + 1 then we can also calculate parameters
a and b of the oscillator. However, this last problem
is a complicated task since coefficients in Eq. (32) are
polinomials with respect to a and b of a very high degree.

In many cases random variable η is a continuous one.
If it is so we can find aproximation of the distributtion of
η whenever η is bounded. It is enough to take numbers
x1, x2, . . . , xk uniformly displayed in the interval of the
values assumed by η and find probabilities corresponding
to x1, x2, . . . , xk by (42).



Distribution of Stochastic Impulses Acting on an Oscillator . . . 77

3. Conclusions

In the earlier reasonings concerning the way of draw-
ing conclusions about the behavior of the stochastic tech-
nological processes, the values of a few initial moments
were used. It turns out that in many cases it is possi-
ble to find approximate distributions of these processes
on the basis of the measurement data. Knowing the ap-
proximate distribution of a given process we have almost
complete knowledge of its behavior. Owing to that, it is
much easier for us to detect possible irregularities in the
technological process.
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