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1. Introduction

Optical solitons are key elements in fiber-optic commu-
nication across trans-continental and trans-oceanic dis-
tances [1-20]. The dynamics of these soliton molecules
are present in various optical devices such as optical
fibers, crystals, metamaterials and metasurfaces, DWDM
systems, couplers, magneto-optic waveguides and several
others. This paper will address these solitons propagat-
ing through couplers that are with optical metamaterials.
The purpose of this paper is to extract exact soliton so-
lutions in such couplers. There are several integration
schemes that are utilized these days to secure soliton so-
lutions in such variety of optical devices. These vary from
the Riccati equation method, the Lie symmetry analy-
sis, inverse scattering tranform (IST), the Kudryashov
method, tanh-coth method, G’/G-expansion scheme and
several others. It must be noted that not all of these
schemes are equally powerful. For example, besides IST
all the remaining methods fail to retrieve soliton radia-
tion. But on the other hand IST turns out to be an epic
failure with power-law, dual-power law, log-law and var-
ious other laws of nonlinearity. Thus, all of the integra-
tion schemes stand on an equal footing to retrieve soliton
solutions to nonlinear evolution equations (NLEEs).

This paper will adopt trial equation scheme to secure
bright, dark and singular soliton solutions in couplers.
This problem has been, however, studied in the past us-
ing the method of undetermined coefficients [19]. There
are three types of couplers studied in this paper. Each of
these couplers are with four forms of nonlinearity. They
are Kerr law, power law, parabolic law and dual-power
law. The subsequent section recapitulates the integration
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scheme in a succinct manner followed by its detailed ap-
plication to obtain the soliton solutions. These solutions
come with restrictive conditions known as constraints, for
their existence, and these are also presented.

2. Trial solution method (a brief overview)

In this section we outline the main steps of the trial
equation method as following [6]:
Step-1: We consider the following NLEE for a function
u of two independent real variables, space x and time t:

P(u7ut7uaivutt7uww7uwt7'") =0. (1)
With traveling wave hypothesis

U(.T,t) = u(§)7 5 = k(x - Ct)7 (2)
where k,c are constants to be determined, we reduce
Eq. (1) to a nonlinear ordinary differential equation of
the form:

Flu,u/,u”,...) =0, (3)
where the prime ’ denotes the derivative d%.
Step-2: Take the trial equation

(W)’ =Fu) =Y and, (4)
=0

where s and a; are constants to be determined. Substi-
tuting Eq. (4) and other derivative terms such as u” or
u”” and so on into Eq. (3) yields a polynomial G(u) of w.
According to the balance principle we can determine the
value of s. Setting the coefficients of G(u) to zero, we get
a system of algebraic equations. Solving this system, we
shall determine ¢, k and values of ag, a1, ..., as.

Step-3: Rewrite Eq. (4) by the integral form

+(€—&) = / \/Flm du. (5)

Based on structure of the polynomial, we classify the
roots of F'(u), and solve the integral equation (5). Thus
we obtain the exact solutions to Eq. (1).
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3. Twin core couplers

The governing system of equations for twin-core cou-
plers in optical metamaterials is given by [19, 20]:

. 2 2 2

gt + a1Gee + F (Iql ) q=4& (\ql q)m +mlq]” qua
+G1 G, + Far, (6)

irt+a2rm+F(|r|2)r:§2 (|r|2r) + 12 \7"|2?"m

+§2r27“;$ + kagq. (7)
To study the integrability aspects of the governing equa-
tions for directional couplers, the following solution struc-
ture is taken into consideration:

q(z,t) = Pi(€)e ), (8)

r(z,t) = Pa(€)e! 0, 9)
where the wave variable ¢ is given by

& = k(z — vt). (10)

Here, P,(€)(I = 1,2) represents the amplitude component
of the soliton solutions and v is the speed of the soliton,
while the phase component ®(x,t) is defined as

P(x,t) = —kr +wt + 6, (11)
where k is the frequency of the solitons, while w rep-
resents the wave number, and € is the phase constant.
Substituting (8) and (9) into (6) and (7) and then de-
composing into real and imaginary parts gives

wk’P' — (w+a®) + F (P?) P,
+ (& +m+ Q) 2P — 66 k2 PP’

—k*(3& +m + Q) PPP — kP =0, (12)
and
—kvP] — 2a;kkP]

+26k* (3§ +m — () PPP' =0, (13)
respectively. Here, | = 3—[ with { = 1,2. From the imag-
inary part Eq. (13), it is possible to obtain the speed of
the soliton in each of the waveguide as

v = —2q;K, (14)
whenever
& +m—¢=0 (15)

holds. Now, equating the two values of the soliton speed
(14) leads to

a; = as = a. (16)
Consequently, the speed is rewritten as
v = —2ak, (17)

the coupled NLSE (6)-(7) becomes
ige +age + F (10 ) =& (1aPa) _+mlofae
Q40 oy + Far, (18)
iry + ary, + F (|r\2) r =& (|r\2 7‘)” + 12 |r* Taw

+Cor®r* op + kog. (19)
and the corresponding modified real part takes the form
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ak’P' — (w+qr®) + F (PY) P+ 2(¢ — &) ° P

—66k2P P> — 2k*C 2P — ky Py = 0, (20)
Using the balancing principle leads to
P=P. (21)
Consequently, Eq. (21) reduces to
ak’P' — G (w+ar’ + k) +F (PP (22)

+2(¢ — &) K2P? — 6k PP — 2k* ¢ PEP! = 0,

In the following subsections, this equation will be studied
for four different types of nonlinearity.
3.1. Kerr law
For the Kerr law nonlinearity, F(s) = b s. The model
Egs. (18) and (19), for twin-core couplers with Kerr
law [19, 20] nonlinearity, reduces to

g0+ agee + bilaPe = & (Jala) gl
+C1q2q*.’rm + klrv (23)
iry + arge + bo |r\2 r=~& <|7“|2 7“) + 79 |r\2 Tox
rxr
+Corr* pe + kag. (24)
and Eq. (22) becomes
ak2Pl” — (w + ik + kl) P+ (bz +2(G—-&) /<c2) Plg
~65k* P P* — 2k*Q PEP] = 0, (25)
Balancing P/’ with P? in Eq. (25), then we get s = 4. Us-
ing the solution procedure of the trial equation method,

we obtain the system of algebraic equations as follows:
PP coeff.:

—2a4k? (2¢ + 3&) = 0, (26)
Pl4 coeff.:

—3ask? (¢ +2¢) =0, (27)
Pl3 coeff.:

—202k? (G + 3&) + 2ack® + by + 26° (G = &) = 0,
(28)

P? coeff.:

—1k? (201 (G + 6&) — 3aas) = 0, (29)
Pl1 coeff.:

—ak? — 6aokE 4+ acgk?® —kj —w =0, (30)
PP coeff.:

Laa k? = 0. (31)

Solving the above system of algebraic equations, we ob-
tain the following results:

2G+35 =0, o =0,
ak? 4 6apk?& + K +w
Qg = 5 as 207
ak?
by — 8K?2 — 18agk2£2 — 3¢ (ky +
a4:_a(l K2&)) aok=§; & (b w). (32)
2a2k2

Substituting these results into Eqs. (4) and (5), we get

dp,
+(6—&) = ,
(5 50) / \/Oéo + OLQJDZQ - Oz4]3l4

where aq is an arbitrary real constant. Now, we discuss

(33)
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two cases as follows:
Case-1: If we set ap = 0 in Eq. (33) and integrate with
respect to Pj, we get bright soliton solutions as:

q(z,t) = £Bjsech(Cy)e!?, (34)

r(z,t) = £Bysech(Cy)el?. (35)
These solutions are valid for

a(ak® + k +w) >0, (36)

a (b — 8x%&) — 3¢ (ki +w) > 0. (37)
Alternatively, we recover singular solitons

q(z,t) = £Bjcsch(Cy)el?, (38)

r(z,t) = £Byesch(Cy)e' ?. (39)
These solutions are valid for

a(ak® + k +w) >0, (40)

a (b — 8k%&) — 3¢ (ki +w) < 0. (41)
In the above case we put:

B — 2a(ak?+k;+w)
vV a(bi—8r28;)—3&; (kitw)”’

C; = ) ke (k(2 + 2akt) — &),

and ¢ = (—kz + wt + 0) everywhere in this paper.

. (an2+kl+w)2
Case-2: T 2kZ(a(b —2r2€) 13 (ki +@))
Eq. (33) and integrating with respect to P, we get dark
solitons

in

If we set ag =

q(x,t) = B tanh(C})e'?, (42)

7 (x,t) = £ By tanh(Cy)e'?, (43)
or a second form of singular solitons

q(x,t) = £B; coth(Cy)e' ?, (44)

7 (x,t) = By coth(Cy)e'?. (45)
These are valid for

(b — 56°&) (ar® + w + k) > 0, (46)

a (b —262§) + 3§ (w+ ki) < 0. (47)

In the above case we put:

[ ar?twtk;
Bi = bi—5k2&; 7

— (5K28i —b;)(ar?+w+tk;)
Ci= \/2k2(a(bi72n2§i)+3§i(w+ki)) (k (z + 2axt) — &)-

3.2. Power law

For power law nonlinear media, F(s) = b s™ where n
represents the power law nonlinearity factor. The model
Egs. (18) and (19), for twin-core couplers with power law
nonlinearity, reduces to [19]

i + agqes + bilg*"g = & (Iq\2 q)m +mlal*que
+<1q2q*za: + klr’ (48)
ir, +argy + by |r|2nr =& <|r|27‘> + 12 |7‘|2rm

+<2r27ﬂ*mx + k2q (49)
and Eq. (22) becomes
ak®P" — (w4 as® + ki) P+ b7t (50)

+2(¢ — &) K2P? — 6k PP — 2k*¢P2P! = 0,
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To obtain the analytic solution, the transformations

G=&=0, (51)
are applied in Eq. (50) and give
ak®P]' — (w + ak® + k) P+ by PP = 0. (52)

Then, in order to obtain closed-form solutions, we use
the transformation

P, = VU, (53)
so that (52) transforms to
ak? (nUU" + (1 — n)U?) —n® (ak® + k + w) U}

+n?h U = 0. (54)
Balancing U,U;” with U} in Eq. (54), then we get s =
4. Using the solution procedure of the trial equation
method, we obtain the system of algebraic equations as
follows:

Ut coeft.:

acgk?(n 4+ 1) +n2b = 0, (55)
U} coeff.:

Laazk?(n +2) =0, (56)
U? coeff.:

acok® —n* (ar”® + ki +w) =0, (57)
U}l coeft.:

—taa1k*(n —2) =0, (58)
U coeft.:

—aapk*(n —1) = 0. (59)

Solving the above system of algebraic equations, we ob-
tain the following results:

n? (ch + k; + w)

ap=0, a1 =0, = k2 ;
n2bl
=0, =———. 60
o3 oy 2+ 1) (60)

Substituting these results into Egs. (4) and (5), we get

dU;
+(€ — = [ —————.
(f 50) / \/OéQUZQ - 014Ul4
Integrating (61) with respect to U;, we obtain bright soli-
tons

q(z,t) = {/£Bisech(Cy)e' ?, (62)
r(z,t) = {/+Bysech(Cy)e' ?. (63)

These solutions exist for

(61)

ark® +k +w >0, (64)

a>0, b >0 (65)
The singular solitons are given by

q(z,t) = {/£Bjcsch(Cy)e' ?, (66)

r(z,t) = {/+Bscsch(Cy)e' ?. (67)
These exist whenever

ar® + ki +w >0, (68)

a>0, b<O0. (69)

In the above case we put:

21 L.
Bi _ (n+1)(a/;i +ki+w) ’
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Oy = ) PORZR) (J (1 4 2ant) — &).

3.8. Parabolic law

For parabolic law nonlinear media, F(s) = b s% + ¢ s*.
The model Egs. (18) and (19), for twin-core couplers with
parabolic law nonlinearity, reduces to [19]:

1t + aGeo + (b1|q|2 + 01|q|4) =& (Iq\2q)m
+111q1* qow + C10°0" o + R, (70)
iry + arg, + (b1|q|2 + cl|q|4> r==E& <|7"|2 7“)
+772 |T|2 Ty + CQTQT*x.t + k2Q~ (71)
and Eq. (22) becomes
ak’ P/ — (w4 ar® + k) P+ (b1 +2(G — &) x°) PP
o PP — 6k PP — 2k P2P! = 0. (72)
Set
1
b =Upg, (73)
so that (72) transforms to
ak? (2U,U]' — U?) — 4 (ak® + k + w) U}

—2k%¢ 20U — UP?) U, — 6K*4UUJ?

+4 (b +2(G — &) UE +4qUt = 0. (74)
Balancing U;U;” with U}! in Eq. (74), then we get s =
4. Using the solution procedure of the trial equation
method, we obtain the system of algebraic equations as
follows:

Ul5 coeff.:
—6a4k? (G + &) =0, (75)

Ul4 coeff.:
—2a3k? (2¢; + 3&) + 3aask? + 4¢; = 0, (76)

Uf’ coefl.:
—200k?(; — 6a2k®E) + 2aask® + 4b; +8(¢ — &) = 0,
(77)

U12 coefl.:
acsk® — 2 (2ak® + 3a1 k%6 + 2(ky +w)) =0,  (78)

Ul1 coeff.:
200k” (¢ — 3&) =0, (79)

UlO coeff.:
—aapk® = 0. (80)

Solving the above system of algebraic equations, we ob-
tain the following results:

4 ((m2 + k; —|—w)

Cl + El = Oa Qp = 03 Q2 = ak2 )
8&; (cm2 +a+ k + w) — 2ab;
a3 = 2k2 ) (81)
4 (GQCl —& (4{1 (ch +a+ ki + w) — abl))
W= 3a3K2 '

Substituting these results into Egs. (4) and (5), we get
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se-e)= | S/
\/OélUl + OéQUl + Othl - 044Ul

where « is an arbitrary real constant. If we set a; = 0
in Eq. (82) and integrating with respect to U;, we obtain
bright solitons

(82)

8a(ak?+ki+w) s
b)) = i 83
ate, 1) \/i@cosh(Bl) +C ¢ (83)
8a(ak?+ke+w) 4o
1) = ! 84
ri@,?) \/j:\//Tgcosh(Bg) + Cs ¢ (84)
These solitons exist with constraints
a(ar® +k +w) >0, A >0. (85)
The singular solitons are
8a (ak? + k1 + w) -
t) = ! 86
q(x ) \/i\/ —A1 Sinh(Bg) + 02 ¢ ( )
8a (ak? + ko + w) o
b)) = ! 87
r(@?) \/i\/—Txgsinh(BQ) 0 (87)
These existence criteria is
a(ar®+k +w) >0, A <O0. (88)
In the above case we put: A; = 63—4(a112 + ki +w)
x(a®c; — &(4&i(ar® 4+ a+ ki + w) — ab;))
+(2ab; — 8&;(ar® + a + k; + w))?. (89)

B; = ) 28R (1 (1 1 2akt) — &),

C’i =4/ 77L2(a’€;]:;ki+w) (k (SU + 2Cllit) — fo)

3.4. Dual power law

For dual power law nonlinear media, F(s) = b s?" +
c 1. The model Egs. (18) and (19), for twin-core cou-
plers with dual power law nonlinearity, reduces to [19]:

iq + ageq + (bl\q|2” + 01|q|4") =& (Iq\Zq)m

e Ger + 162G 4o + Far, (90)
iry + arg; + (b1|q\2” + cl\q|4”> r=~& (IT\2 7‘)
02 |7 Toe 4 Cor?r* ue + kag, (91)

and Eq. (22) becomes
ak’P]' — (w+ ak? + ki) Py

+ (bl ) (Cl _ fl) ,{/2) F)l2n+1 + clf)l4n+1

—64k2P,P* — 2k P2P] = 0. (92)
To obtain the analytic solution, the transformations
G=&=0, (93)

are applied in Eq. (92) and give
ak’P]' — (w+ ar? + ki) P+ b P!
+a Pt =0. (94)
Then, in order to obtain closed-form solutions, we use
the transformation

1
P =Up. (95)
so that (94) transforms to
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ak® (2nUU]" + (1 = 2n)U?) — 4n® (ar® + ky + w) U?

+4n2b, U + 4n’ U}t = 0. (96)
Balancing U;U;” with U in Eq. (96), then we get s =
4. Using the solution procedure of the trial equation
method, we obtain the system of algebraic equations as
follows:

Ul4 coeff.:

aoyk?(2n 4+ 1) + 4n’c; = 0, (97)
Ul3 coeft.:

acsk?(n + 1) 4+ 4nb; = 0, (98)
U12 coeff.:

acsk® — 4n® (ak® + k +w) =0, (99)
Uzl coeff.:

—aa k*(n—1) =0, (100)
UlO coeft.:

acgk?(1 —2n) =0, (101)

Solving the above system of algebraic equations, we ob-
tain the following results:

4n? (ch + k; + w)

040:0, 041:0, Qg =

ak? ’
4n2b, 4n2¢

= = 102

s ak?(n+1)’ a ak?(2n +1) (102)
Substituting these results into Egs. (4) and (5), we get

dU;
+(E—&) = . 103
- = [ T (103)

Integrating (103) with respect to U;, we obtain bright
solitons

2(n+1) (ar2 +k14+w) ;s
t)="* ! 104
a(z,1) \/ +B; cosh(Cy) + by ¢ (104)
2(n+ 1) (ar?2 + ko +w) ;4
t — 2n 1 1
r(z.1) \/ + By cosh(C3) + by ¢ (105)
These stay valid when
a(ak® + k +w) >0, (106)
4(n+1)%¢ (ak® + ki +w) + (2n+1)b7 > 0. (107)
The singular solitons are given by
2(n+1) (ar2+k14+w) ;s
t)=* ! 1
q(x, ) \/ iBl sinh(Cl) + bl ¢ ’ ( 08)
2(n+ 1) (ar?2 + ko +w) ;4
t)y= 7% te 109
r(@?) \/ B, sinh(Cy) + by« (109)
They exist when
a (cmz + ki +w) >0, (110)
4n+1)%¢ (ar® + k +w) + 2n+1)b7 <0.  (111)

In the above case we put:

B — 4c;(n+1)2(ak?+k;+w)+b?(2n+1)
L 2n+1 ’

O = ) e TRit) (1 4 2akt) — &).
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4. Multiple-core couplers (coupling with nearest
neighbors)

The system describing the dynamics of multiple-core
couplers is given by [19]

2 2
ig)) +ag) + F (‘q(”’ > ¢V =& (‘q(”’ qm)
2 2 *
+m’q(”’ ¢+ G gV,

K (qa—l) —2q" + q<1+1>> 7

where 1 <! < N. Equation (112) represents the general
model for optical couplers where coupling with nearest
neighbors is considered. Here, K is, as before, the cou-
pling coefficient. In order to address this model for the
five forms of nonlinear media, the initial hypothesis is
taken to be

(2, t) = Py(&)e' D, (113)
where Pj(z,t) is the amplitude component of the soliton,
which carries the same definition as in (8) or (9). After
substituting the initial guess (113) into (112), the result-
ing expression is split into real and imaginary elements.
The imaginary part allows one to calculate the speed of
the soliton as

T

(112)

v = —2qK, (114)
provided that
& +m—G=0, (115)

as was the case for twin couplers. Notice that this speed
of the soliton stays the same irrespective of the type of
nonlinearity and type of soliton to be considered. Now,
for the real part portion, one gets

wk®P — (w+ aik?) + F (P?) P +2(¢ — &) k2P

_6€lk2P)lF)ll2 _ QkQCZP)lQP)l//

—K(P 1 —2P+ P,) =0, (116)
Using the balancing principle leads to
P_i =P = Py, (117)

Consequently, Eq. (116) reduces to
alePl// _ (W+al/€2) +F (P)IQ) P)l +2(Cl _fl)KQP)lS

66 k2P P)* — 2k*Q P2 P/ = 0. (118)
In the following subsections, this equation will be studied
for four different types of nonlinearity.

4.1. Kerr law

For the Kerr law nonlinearity, F((s) = b s. Eq. (112),
for multiple-core couplers (coupling with nearest neigh-
bors) with the Kerr law nonlinearity, reduces to [19]:

2 2
ig" +aig) + bz‘q(”‘ =& ((q(”‘ q<”>
5 ) § Tx
+m‘q(”’ ¢ + g7,

1K (qu—l) —2¢" 4 q<1+1>) :
and Eq. (118) becomes
ak® P — (w+ a;r®) + (b +2(G — &) K°) PP

(119)
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—64k2P,P* — 2k*QPPP] =0, (120)
Balancing P/ with P? in Eq. (120), then we get s =
4. Using the solution procedure of the trial equation
method, we obtain the system of algebraic equations as
follows:

PP coeff.:
—204k? (2¢; + 34) = 0, (121)
Pl4 coeff.:
—3ask® ({1 +26) =0, (122)
Pl3 coefl.:
—200k? (¢ 4 38)) + 2a104k® + by + 2%¢
—2k%¢ =0, (123)
Pl2 coeff .:
—3k% (201 (¢ + 66) — Baaz) = 0, (124)
Pl1 coefl.:
—aik? — 60k + ajonk? —w =0, (125)
Pl0 coeff .:
lajonk? = 0. (126)

Solving the above system of algebraic equations, we ob-
tain the following results:

aik? + 6agk?é + w

2G6+36=0, an=0, = 3 .
(le
& (80,1&2 + 18040]62& + 3w) —aib;
a3 = 0, Qy = .
2a;2k2

(127)

Substituting these results into Egs. (4) and (5), we get

dp,

+(& — = . 128
(€ - &) /¢a0+a21%2+a4P;* (128)

where aq is an arbitrary real constant. Now, we discuss
two cases as follows:

Case-1: If we set ap = 0 in Eq. (128) and integrating
with respect to P;, we obtain bright solitons

¢ (x,t) = +Bsech(Cp)e' ?. (129)
They exist when

ar (ar? +w) >0, (130)

a; (bl — 8K2fl> — 34w > 0. (131)
The singular solitons are

q(l)(x,t) = :I:Blcsch(Cl)ei‘p. (132)
This will be valid for

ar (wk* +w) >0, (133)

ar (b — 8k%&) — 3§w < 0. (134)

In the above case we put: B; = ,/%,
Cr =/ 54 (k(x + 2ar5t) — &)

a 52+w 2 .
Case-2: If we set ap = 72k2(al((bll_252&))+3&w) in Eq. (128)

and integrating with respect to Pj, we get dark solitons
¢ (z,t) = £B; tanh(Cy)e'?, (135)
or singular solitons of second type
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¢ (x,t) = £B; coth(Cy) el ?, (136)
These solutions exist when

(b — 5628 (ar® +w) > 0, (137)

ap (b — 26%&) + 3§w < 0. (138)

2
In the above case we put: B; = \/%,

_ b —5k2&) (a1 k2 +w
Ci= \/_ nggal(bzfézﬂ(zélﬁr%l)w) (k (z + 2a15t) = &)

4.2. Power law

For power law nonlinear media, F(s) = b s™ where n
represents the power law nonlinearity factor. The model
Eq. (112), for twin-core couplers with power law nonlin-
earity, reduces to [19]

2n 2
ig" + ag) + bz‘q(”‘ =& (‘q(”’ qm)

2 2 *
+m‘q(”( ¢+ Gq" ",

rT

+K (q“‘” - 24" + q(l“)) 7 (139)
and Eq. (118) becomes
ak?P] — (w+ a;k?) P+ b PPt
+2(G — &) K° P — 64K PP
—2k*Q PP =0, (140)

To obtain the analytic solution, the transformations

GQ=&=0, (141)
are applied in Eq. (140) and give
ak®P' — (w+ aik®) P+ b PP = 0. (142)

Then, in order to obtain closed-form solutions, we use
the transformation

P =U, (143)
so that (142) transforms to
ak® (nU U] + (1 = n)U?) = n® (ar” + w) U}
+n?h U = 0. (144)

Balancing U;U;" with U}' in Eq. (144), then we get
s = 4. Using the solution procedure of the trial equation
method, we obtain the system of algebraic equations as
follows:

Uz4 coeft.:

ajagk?(n+ 1) +nb = 0, (145)
Ul?’ coeft.:

Lajazk®(n+2) =0, (146)
UZQ coeff.:

ajank? — n? (am2 + o.)) =0, (147)
Uzl coeff.:

—Llajak?(n —2) =0, (148)
Ul0 coeff.:

—ajpk?(n — 1) = 0. (149)

Solving the above system of algebraic equations, we ob-
tain the following results:
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n? (al,‘f2 + w)

ap=0, ar=0, az= k2 )
’Ille
=0 = 150
Q3 ) Qg alk2(n+ 1) ( )

Substituting these results into Egs. (4) and (5), we get

dU;
+(&— &) = / _—
( 0) \/OéQUZQ —044Ul4
Integrating with respect to U;, we obtain bright soliton
solution

(151)

¢ (x,t) = {/£Bsech(C))e'?, (152)
This solution is valid for
aik® 4+ w > 0, (153)
a; >0, b >0. (154)
The singular solitons are given by
¢ (x,t) = {/£Bjesch(Cp)e'?, (155)
Its domain of existence is
ak® 4+ w > 0, (156)
ap >0, b >0 (157)
In the above case we put: B; = %,
C, = \/7% (k (x 4 2a;Kt) — &p).
4.8. Parabolic law
For parabolic law nonlinear media, F(s) = b s +

¢ s*. The model Eq. (112), for twin-core couplers with

parabolic law nonlinearity, is [19]
2 4
+ale®| > q=
ol ,0 ol?,w 02,0
& ‘q ‘ q +m‘q ) oz T Q77 ¢ 4y
LK (q(H) _9q0 4 q<1+1>> 7

and Eq. (118) becomes
ak®P — (w4 ar?) P+ (b +2(G — &) ) B}

ig" + aiq) + (bz}q(”

(158)

+a P} — 64k PP” — 22 PP = 0. (159)
Set
1
P =U2, (160)
so that (159) transforms to
ak® 20U — U?) — 4 (ar® + w) U?
—2k%¢ (20U — UP?) U, — 6K*4UUJ?
+4 (b +2(G — &) UP + 4qUft = 0. (161)

Balancing U;U]” with U} in Eq. (161), then we get
s = 4. Using the solution procedure of the trial equation
method, we obtain the system of algebraic equations as
follows:

Ul5 coefl.:

—6ask® (G + &) =0, (162)
Ut coeft.:

—2a3k? (2¢ + 3&) + 3aiaak® + 4e; = 0, (163)

Ul?’ coeff.:
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—2a2k2§l — 6a2]€2§l + 2ala3/€2 + 4b; + 8(;
8 =0, (164)
Ul2 coeff.:
aook® — 2 (2057 4 3a1k*& + 2w) =0, (165)
Ull coeff.:
200k* (G — 3&) =0, (166)
UlO coeff.:
—ayapk® = 0. (167)

Solving the above system of algebraic equations, we ob-
tain the following results:

4 (aR? +
G+&=0, a=0, QQZLQW)
alk
8¢ (amz +a; + w) — 2a;b;

05— o , (168)

_ 4 (achl —& (4& (amQ +a; + (JJ) — agbl))
oy = — 3 3](:2 .

ap

Substituting these results into Egs. (4) and (5), we get
\/OélUl + OéQUl + OégUl — OZ4Ul

where « is an arbitrary real constant. If we set a; = 0

in Eq. (169) and integrating with respect to U;, we obtain

bright soliton solution

8ay; (am2 + w) B

(169)

O(z,t) = 170
@@ t) ++/A; cosh(C)) + B, (170)
They exist with
a (wr? +w) >0, A >0, (171)
The singular solitons are
8aq (a1/£2 + w) i ®
) = . 172
Q(x ) +v—A; sinh(C’l) + B ¢ ( )
Their domain of definition is
a (am2 —|—w) >0, A; <0, (173)
where
64
A = 3 (am2 + w) (a?cl - & (44 (am2 + a4 w)
7albl)) + (2albl — 8¢ (amz +a; + w))2 . (174)

In the above case we put:
B, =2 (albl — 4§ (am2 +a; + UJ)),

Cr = \/ M) (o( + 2ai5t) — &).
4.4. Dual power law

For dual power law nonlinear media, F(s) = b s? +
c . The model Eq. (112), for twin-core couplers with
dual power law nonlinearity, modifies to [19]
q(

2n 4n
it + agl!) + <bz‘q(”‘ + e g > q=
& (’q(”rq(”> +m’q(”‘2q§fﬁ
xrx
2 *
+GqW ¢ + K (q(l_l) —2¢% + q(l“)) , (175)
and Eq. (118) becomes
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wk®P — (w4 ar?) P+ (b +2(G — &) k) P

o PP — 66k PP)” — 2k2(P2P! = 0. (176)
To obtain the analytic solution, the transformations

G=&=0, (177)
are applied in Eq. (176) and give
alk2Pl// _ (CL} + allig) Pl 4 blPZQnJrl
+a Pt = 0. (178)

Then, in order to obtain closed-form solutions, we use
the transformation
= Up. (179)
so that (178) transforms to
ak? (2nUU]" + (1 = 2n)U?) — 4n® (aik® + w) U}

+4n2b, U + 4n U}t = 0. (180)
Balancing U;U;" with U}! in Eq. (180), then we get
s = 4. Using the solution procedure of the trial equation
method, we obtain the system of algebraic equations as
follows:

Ut coeff.:

ajaak?(2n + 1) + 4n’c; = 0, (181)
UP coeff.:

ajazk?(n + 1) + 4n2b, = 0, (182)
U? coeff.:

ajask® — 4n? (am2 + w) =0, (183)
U} coeff.:

—ayk*(n —1) =0, (184)
U coeft.:

ajapk?(1 —2n) =0, (185)

Solving the above system of algebraic equations, we ob-
tain the following results:

4n? (am2 + w)

0[0:0, a1:0, Qg =

alk‘2 ’
4n2b 4An2¢
= =0 _ 186
as ak?(n+1)’ e ark?(2n +1) (186)

Substituting these results into Egs. (4) and (5), we get

e &) v,
0 VUZ — agUP — a UL

Integrating Eq. (187) with respect to U;, we obtain bright
solitons

(187)

2(n+1) (wqr? +w) ,
(l) t — 2n id 188
a7, 1) \/ +B; cosh(C)) + by ¢ (188)
Their existence criteria is
ar (@r? +w) >0, (189)
4n+1)%q (wr® +w) + (2n + 1)b] > 0. (190)
The singular solitons are:
2(n+ 1) (k% +w)
@) t) = 2n id 191
(@0 \/ +B,sinh(Cp) + by (191)

These are meaningful whenever

A.H. Arnous et al.

a; (am2 —l—w) > 0,

4(n+1)%q (am2 + w)

In the above case we put:
B _\/401(n+1)2(am2+w)+bl2(2n+l)
L= 2n+1 ’

o 4n? (a2 +w)
Cl - a k2

(192)

+(2n 4+ 1)b < 0. (193)

(k(z + 2a;kt) — &o).

5. Multiple-core couplers (coupling with all
neighbors)

The governing equation that describes the dynamics
for multiple couplers, where the coupling action is with
all the existing neighbors, is [19]

2 2
i+ ag) + F (‘qa)’ ) = (‘qm’ q(w)

N
m=1

where 1 < < N while A, represents the coupling coef-
ficient with all neighbors. The assumption to be consid-
ered here is taken to be the same as given by (113). The
substitution of this hypothesis into (194) yields the same
soliton speed as in (114) subject to (115), which is valid
for all nonlinearities and for all the considered solitons.
To this end, the real part equation now takes the form

+m‘q )q + Qg

ak®P — (w+ aqik?) + F (P?) P +2(¢ — &) k*P?
_6§lk2P)lP)[/2 _ 2k2<l323//
N
— Z Aim P = 0, (195)
Using the balancing principle leads to
P, =P, (196)

Consequently, Eq. (195) reduces to

N
ak*P’ — (w + ) A+ am2> +F(P?) P, (197)

m=1

+2(G — &) K2 P} — 64k* P P]* — 2k PP = 0.

In the following subsections, this equation will be studied
for four different types of nonlinearity.
5.1. Kerr law

For the Kerr law nonlinearity, F/(s) = b s. Eq. (194),
for multiple-core couplers (coupling with nearest neigh-
bors) with the Kerr law nonlinearity, simplifies to [19]

2 2
ig" + aig) + bz’q(”‘ =& (‘q(l)‘ q(l)>

xrx

+m‘q‘”’2q§f; +Ga®% 0", + ZN: Nirms (198)
and Eq. (197) becomes "
ak?P] — (w + i Nim + air? | — 22 PP/
+ (b +2(¢ —ng)lﬁ?) P} —66k*PP* =0, (199)

Balancing P/ with P? in Eq. (199), then we get s =
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4. Using the solution procedure of the trial equation
method, we obtain the system of algebraic equations as
follows:

Pl5 coefl.:
—2a4k? (2¢; + 3§) = 0, (200)
P} coeff.:
—3azk® (G +28) =0, (201)
Pl?’ coeff.:
—20[2]{12 (Q + 3&) + 2(110&4]432 + b + 2H2<l
—2k%6, =0, (202)
P? coeff.:
— 1k (201 (G + 6&) — 3ay3) = 0, (203)
Pl1 coeff.:
N
—aik? — 60k*E + ajank? —w — Z Aim =0, (204)
m=1
PP coeff.:
lajaik? = 0. (205)

Solving the above system of algebraic equations, we ob-
tain the following results:

2¢+ 34 =0,

aik? 4 6apk?& + w + Egzl AXim
alk:2 ’

041:(), 043:0,

g =

(206)

& (8@[&2 + 180&0]{52{[ + 3w+ 3 ZZZI )\lm) —aib;

= 2&12]{12
Substituting these results into Egs. (4) and (5), we get
dP,
(€ — &) = / 5 =
Voo +ax PP+ aul)

where «aq is an arbitrary real constant. Now, we discuss
two cases as follows:
Case-1: If we set ap = 0 in Eq. (207) and integrating
with respect to P;, we recover bright soliton solutions

(207)

¢ (x,t) = +Bjsech(Cp)e' ?, (208)
These are valid with
N
ap (am2 +w+ Z )\lm> > 0, (209)
m=1
N
a; (bl — 8/@251) —3& <w + Z /\lm> > 0. (210)
m=1
The singular solitons are given by
¢ (x,t) = £Bjesch(Ch) el ?, (211)
These exist when
N
a (am2 twt > ,\lm> >0, (212)
m=1
N
a; (bl — 8/@251) - 34 <w + Z /\lm> < 0. (213)
m=1

In the above case we put:
B - 2al(aln2+w+2%:1 )\lm)
L= al(bligngl)iggl(w+2%:1 )‘lm) ’
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= \/am2+w+zfi=1 A (2 4 2arkt) — &o).

alk2
Case-2: If we set ag =
(a4t SN A ) . )
202 (ar (b —212€) 436 (WA 2Ny i) Eq. (207) and inte
grating with respect to P;, we get dark optical solitons

¢ (z,t) = £B; tanh(Cy) el ?, (214)
or singular optical solitons of the second type
¢ (x,t) = £B; coth(Cy)el?, (215)
These solutions are valid for
N
(b — 5x%¢)) <am2 twt > Alm> >0, (216)
m=1
N
a; (bl — 2/{2&) + 34 <w + Z Alm) < 0. (217)
m=1
In the above case we put:
ajk2+w N m
B = /"t e
O — |- (bl—5H2§l)(am2+w+Zﬁ:1 >\zm)
L= 2k2(al(bL72K/2§l)+3£l(UJ+ZTI:J;:1 )\lm))
x (k(x + 2a1Kt) — &o).
5.2. Power law
For power law nonlinear media, F(s) = b s™. The

model Eq. (194), for twin-core couplers with power law
nonlinearity, becomes [19]

2n 2
ig" + aig) + bz’q(”‘ =& (‘q(”’ qm)

N xTrxr
2 2
+m‘q(”’ ¢+ g g+ Am™, (218)
m=1

and Eq. (197) becomes

N
alePl//_ (w—i—amQ—i— Z Alm) -Pl +bl-F)12n+1

m=1

+2(G — &) 2P} — 66k* PP

—2K*G PP =0, (219)
To obtain the analytic solution, the transformations

G=&§=0, (220)
are applied in Eq. (219) and give
N
ak?P] — (o.) + aik? + Z )\lm> P
m=1
+o PP = 0. (221)

Then, in order to obtain closed-form solutions, we use
the transformation
Pl = U[%a
so that (221) transforms to
alk® (nUU] + (1 = n)U?)

(222)

N

—n? (CLH2 + ) A + w) U + n’biUf = 0. (223)
m=1

Balancing U;U]" with U} in Eq. (223), then we get

s = 4. Using the solution procedure of the trial equation
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method, we obtain the system of algebraic equations as
follows:

Ul4 coeff.:

ajagk?(n + 1) +n?b = 0, (224)
U13 coeff.:

lajazk*(n+2) =0, (225)
Ul2 coefl.:

N
ajask? —n? (amQ 4w+ Z )\lm> =0, (226)
m=1

Ul1 coeff.:

—laiaqk*(n —2) =0, (227)
UlO coeff.:

—ajpk*(n — 1) = 0. (228)

Solving the above system of algebraic equations, we ob-
tain the following results:

n? (almQ +w+ Zzzl /\zm)

ap=0, a1=0, az= e ;
Tl2bl
=0 = . 229
W=D ME TRt 1) (229)

Substituting these results into Egs. (4) and (5), we get

dU;
(€ = &) = / —
\/ OéQUl — OZ4UI
integrating with respect to U;, we obtain bright soliton
solutions

(230)

¢ (z,t) = Y/+£Bsech(Cy)e'?, (231)
They are valid for
N
ak +w+ Y Aim >0, (232)
m=1
a; >0, b >0. (233)
The singular optical solitons are
¢ (x,t) = {/£Bjesch(Cp)e'?, (234)
These exist when
N
ar’ +w+ Y Am >0, (235)
m=1
a; >0, b >0. (236)
In the above case we put:
N
B = \/(n+1>(am2+z+2m1 At ) 7
n2(a;k24w N Aim
G = \/ L ajk%:m_l in) (€ — &o)-
5.8. Parabolic law
For parabolic law nonlinear media, F(s) = b s +
¢ s*. The model Eq. (194), for twin-core couplers with

parabolic law nonlinearity, is [19]
2 NE
+ Cl’q( )‘ > q=

2 2
& (‘q”)‘ q(”) +m‘q(”) q)

ig" + aiq) + (bz}q(”

A.H. Arnous et al.

N
2 *
+GaD7 ¢ + D Nima™, (237)
m=1
and Eq. (197) becomes
N
ak*P — (w tar®+ Y Alm> P,
m=1
+ (b +2(G - &) R%) P
+a PP — 66k2PP” — 2k PEP = 0. (238)
Set
1
P =UZ, (239)

so that (238) transforms to

N
ak? (20,0 — U?) — 4 <(m? + ) A + w) U?

m=1

—2k2G (20U — U?) Uy — 6k*§U UL

+4 (b +2(¢ — &) UP +4qUft = 0. (240)
Balancing U;U]" with U} in Eq. (167), then we get
s = 4. Using the solution procedure of the trial equation
method, we obtain the system of algebraic equations as
follows:

Up coeff.:

—6ask® (G + &) =0,
U coeff.:

—2a3k? (2¢; + 3&) + 3ajauk® + 4, = 0,
Ul3 coeff.:

—200k2%( — 6ak?E; 4 2aa3k? + 4b; + 8¢

(241)

(242)

_8€l = 07
Uz2 coeff.:
ala2k2 — 4al/<a2 + 6a1k2§l

N
+4 <(JJ—|— Z /\lm> =0,
m=1
Ull coeft.:
200k” (¢ — 3&) =0,
U coeff.:
—a0k? = 0. (246)

Solving the above system of algebraic equations, we ob-
tain the following results:

(243)

(244)

(245)

G+&=0, ay=0,
4 (amz +w+ 2117\]1:1 )\lm>
a2 = alk2 ’
Sfl (amQ +a; +w -+ Zanzl )\lm) — 2a;b;
g = aka , (247)
G%Cl — 4£l2 (amQ +a;+w+ Zan:l )\lm) —aibi§
w“= 07507 k2 '

Substituting these results into Eqs. (4) and (5), we get
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+(¢—&) =
dU;
\/OélUl + OéQUlQ + Oz4Ul4.
where « is an arbitrary real constant. If we set oy = 0

in Eq. (248) and integrating with respect to U;, we obtain
bright solitons

(248)

8ay (am2 +w+ 27]:]1:1 )\lm)

+v/4, cosh(C)) + By
The domain for existence is

¢V (x,t) = el?. (249)

N
a (amZ tw+ Y Alm> >0, A >0. (250)
m=1
The singular solitons are
8(11 (aflf€2 +w + Z;\szl )\lm) (3
x,t) = e'”, 251
q( ) +v/—A; sinh(C’l) + By ( )
These exist with
N
a; (amQ +w+ Z )\lm> >0, A; <0, (252)
m=1
where
N
64
Al = ? (am2 + w+ m221 )\lm>

N
X <afcl — 51 (4& (auﬂQ +a; +w—+ Z /\lm> — aﬂn))
m=1

N 2
+ <2a1bl — 8¢ (am‘? +a; +w+ Z /\lm>> .(253)

m=1
In the above case we put:

By =2 (albl — 4¢ (am2 +a +w+ Zile Alm)),

4(ajk2+w N Aim
o B,
5.4. Dual power law

For dual power law nonlinear media, F(s) = b s? +
c s*". The model Eq. (194), for twin-core couplers with
dual power law nonlinearity, transforms to [19]

2n
i + ag) + (bl)q(l)‘ +Cz)q()

4n>

l

q =
2 2

& (‘q(”‘ q(”) +m‘q(l)) q{!)

N
+0a"% 4O 0+ 3 A ™, (254)
m=1
and Eq. (197) becomes
N
alkzﬂ// — (w + amz + Z >\lm> P

m=1
+ (b +2(G - &) %) P
+a P} — 66K PP” — 2k PP = 0, (255)

To obtain the analytic solution, the transformations

G=&=0, (256)
are applied in Eq. (255) and give
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N
alePl// o <w+am2 + Z >\lm> Pl +blP12n+1
m=1
+a Pt =0. (257)
Then, in order to obtain closed-form solutions, we use
the transformation

P =Up. (258)
so that (257) transforms to
alk® (2nUU] + (1 — 2n)U}?)
N
—4n? <am2 tw+ Y )\lm> U? + 4n’bU}
m=1
+4n?*q Ut = 0. (259)

Balancing U;U]" with U}! in Eq. (259), then we get
s = 4. Using the solution procedure of the trial equation
method, we obtain the system of algebraic equations as
follows:

Ut coeff.:

ajask?(2n + 1) + 4n’c; = 0, (260)
UP coeft.:

ajazk?(n + 1) + 4n2b, = 0, (261)
U? coeff.: N

ajask® — 4n? (amQ 4w+ Z )\lm> =0, (262)

m=1

U}l coeft.:

—ajonk*(n —1) =0, (263)
U coeft.:

ajapk?(1 —2n) =0, (264)

Solving the above system of algebraic equations, we ob-
tain the following results:

aO:O, a1:0,

4n? (am2 + w4+ Eﬁ:l Alm)
Qg = )

alk2
4n2bl 4TL261

= = 265

s aik?(n+1)’ s aik?(2n + 1) (265)

Substituting these results into Egs. (4) and (5), we get
dU
+(€ — = . 266
(6~ &) /¢%W_%W_MW (266)

Integrating (266) with respect to U;, we obtain bright
soliton solutions

o 2(n+ 1) (otm2 +w+ 25:1 )\lm)

U] — i
g (x,t) = e,
+Bjcosh(Cy) +b
1 cosh(Cy) + by (267)
This solution is valid for
ar (ak? +w) >0, (268)
4n+1)%q (wr® +w) + (2n + 1)b7 > 0. (269)

The singular solitons are given by Eq. (270):

an| 2(n+ 1) (am2 4w+ ZNzl )\lm) )
q(l)(m t) = m ol ®
’ +B; sinh(C’l) + by ’




1410 A.H. Arnous et al.

These are meaningful whenever

a; (am2 —|—w) > 0,
and

4(n+1)2%¢ (s’ +w) + (2n + 1)b} < 0.
holds. In the above case we put:

B — 4cl(n+1)2(a1f€2+w+ZZ:1 )\lm)+b12(2n+1)
L= 2n+1 ’

4n2(ajk2 4w N Am
C = \/ ( +a;227n7 ) (€ —&o)-

6. Conclusions

This paper studied solitons in nonlinear directional

couplers with optical metamaterials. The integration
scheme is the trial function method. Three types of
couplers are taken into consideration. They are twin-
core couplers, multiple core couplers where coupling was
with nearest neighbors and finally multiple-core couplers
where coupling was with all neighbors. Each of these type
of couplers were further handled with four forms of non-
linear media. They are Kerr law, power law, parabolic
law and dual-power law. Thus, bright, dark and singu-
lar soliton solutions were retrieved. It must be noted
that dark solitons solutions were recoverable only for the
Kerr law nonlinearity for all of the three types of cou-
plers. Such is the limitation of this approach.
The results of this paper carry a lot of scope for future
studies. This scheme will be applied to other forms of
nonlinear media such as anti-cubic nonlinearity. Addi-
tionally, this methodology shall be applied to other op-
tical devices such as magneto-optic waveguides, DWDM
systems, birefringent fibers, liquid crystals. Those results
are awaited at this time. Moreover, the soliton solutions
will be obtained in presence of several perturbation terms
that are predominantly of Hamiltonian type. Therefore
the readers are requested to patiently stay tuned.
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