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Thermoelectric materials are used as solid-state heat pumps and as

power generators. The low efficiency of devices based on conventional bulk

thermoelectric materials confines their applications to niches in which their

advantages in compactness and controllability outweigh that drawback. Re-

cent developments in nanotechnologies have led to the development of ther-

moelectric nano-materials with double the efficiency of the best bulk mate-

rials, opening several new classes of applications for thermoelectric energy

conversion technology. We review here first the physical mechanisms that

result in the superior thermoelectric performance of low-dimensional solids,

compared to bulk thermoelectric materials: they are a reduction of the lat-

tice thermal conductivity, and an increase in the Seebeck coefficient S for

a given carrier density. The second part of this review summarizes exper-

imental results obtained on macroscopic arrays of bismuth, antimony, and

zinc nanowires with diameters ranging from 200 to 7 nm. We show how

size-quantization effects greatly increase S for a given carrier concentration,

as long as the diameter of the nanowires remains above 9 nm, below which

localization effects start dominating. In a third part, we give data on PbTe

nanocomposites, particularly bulk samples containing 30 nm diameter Pb

inclusions. These inclusions affect the electron scattering in such a way as

to again increase the Seebeck coefficient.

PACS numbers: 72.10.–d, 73.63.–b, 81.07.–b

1. Introduction and motivation

Thermoelectricity (TE) is one of the simplest technologies applicable to en-
ergy conversion. Thermoelectric materials can generate electrical power from heat,
and use electricity to function as heat pumps providing active cooling or heating.
The working fluid in these energy converters consists of the conduction electrons.
The technology is entirely solid-state, and thermoelectric systems are simple com-
pared to conventional mechanical systems; however, this simplicity comes at a
price. Firstly, the complexity of the energy conversion problem is shifted to the
solid-state physics aspects of the materials themselves. Secondly, the efficiency
of conventional TE systems is far inferior to that of equivalent mechanical sys-
tems. The conventional wisdom is therefore that TE technology is limited to niche
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applications where its advantages of compactness, reliability and ease of control
overcome its lack of efficiency. The recent developments in nanotechnologies that
are reviewed in this paper hold the promise to change that situation, and to lead
to the development of new large scale and environmentally-friendly applications
in cooling technology and in power generation.

Thermoelectric energy conversion dates back to the period when Telkes [1],
Ioffe [2, 3] and Goldsmid [4] applied the newly developed knowledge of transport in
semiconductors to the problem. The technology developed at that time still domi-
nates today [5], except for progress made in skutterudite materials [6]. It was rec-
ognized [7, 8] in the 1990’s that low-dimensional systems should result in materials
with much better efficiencies than bulk materials, through low-dimensional effects
on both charge carriers and lattice waves. Such improvements have been experi-
mentally demonstrated on Bi2Te3/Sb2Te3 superlattices [9] and on PbTe/PbSeTe
and PbTe/PbSnSeTe quantum dot superlattices [10] in the early 2000’s: the proof
of principle that TE technology can indeed compete efficiency-wise with mechani-
cal cooling systems and power generators thus exists. Research is needed to develop
bulk material preparation techniques of nano-scale materials, such as self-assembly
techniques, that will make this a commercial reality.

The basic material property governing the efficiency of thermoelectric energy
converters is the thermoelectric figure of merit [4]:

Z =
S2σ

κ
, (1)

where S is the Seebeck coefficient, also called the thermoelectric power, σ is the
electrical conductivity and κ is the thermal conductivity. Z is usually multiplied
by the average temperature T to yield a dimensionless number ZT . Conventional
thermoelectric materials, most of which were developed in the 1960’s, have been
limited to ZT = 1 at T = 300 K. The new nano-scale materials, in particular
quantum-dot superlattices (QDSL), have reached ZT = 2 at 300 K [10], and
even ZT = 3 at 450 K [11]. The results are significant: we shall now show that
the value of ZT = 2 is near the threshold [12] at which one can envision large-
-scale applications of thermoelectricity with performances comparable to those of
conventional mechanical machines.

The equations relating ZT to the efficiency of a TE system generating elec-
trical power from a heat source are given in the classical monographs on thermo-
electric applications [4]. In essence, the efficiency consists of the Carnot factor
(determined by the temperature gradient across the generator), multiplied by a
thermoelectric efficiency factor that is a function of ZT . An application for ther-
moelectric generators that is the subject of research today is the recovery of heat
wasted by automobile engines. It is known that the chemical energy in an auto-
motive fuel is distributed into three roughly equal parts: (1) mechanical power
transmitted to the wheels, (2) heat dissipated in the radiator, and (3) heat ex-
hausted through the tailpipe. Therefore, if the heat wasted in the exhaust could
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be converted into electrical power with a given efficiency η (and put to good use
for instance in auxiliary electrical propulsion), the efficiency of the vehicle would
be increased by the same amount η. Let us consider, for example, the case of an
automotive electric generator operating using the exhaust gases on a typical pas-
senger car, downstream from the catalytic converter. The high-temperature end
of the TE elements could reach 250◦C (including the losses in the heat exchanger
between the gases and the elements) and the cold side could be maintained at
100◦C so as to avoid condensing water. One can calculate [4] that with ZT = 1,
η = 6%, but with ZT = 2, η = 10%. Such an improvement in fuel economy would
be very considerable.

The second large-scale application involved cooling and refrigeration. The
“efficiency” of thermoelectric heat pumps is given by the coefficient of performance
(COP). The COP is defined as the amount of heat pumped at the cold end of a TE
refrigerator, or at the hot end of a TE heating element, divided by the amount of
electrical power used. Once again, the equations relating the COP of the system
to the ZT of the material are given elsewhere [4] for single Peltier elements and
classical TE modules. We consider, for example, the case of automotive climate
control/air conditioning. The present vapor-compression mobile air-conditioning
systems use a fluorocarbon (R-134a) as cooling fluid. It is expected that R-134a
must be replaced because of its potential as a greenhouse gas. This creates an
opportunity for TE cooling to replace R-134a cooling, if the efficiency, power,
and economical requirements of the system can be met. Reference [12] shows a
comparison of the maximum COP of a thermoelectric cooler with that of vapor-
-compression systems calculated for a temperature gradient of 40◦C, as a func-
tion of the thermoelectric figure of merit, ZT , of the material. Using classical TE
modules, with ZT = 1, the COP of a thermoelectric cooler is only 25% of that of
a vapor-compression cooler, and thus this technology cannot be used. However,
by combining recent ideas in “segmentation” of heat exchangers [13, 14], with
new TE materials that have a ZT = 2, the COP of TE coolers can reach that
of vapor-compression coolers in climate-control applications. Once the efficiency
issue is overcome, TE cooling has several additional advantages: (1) it is particu-
larly favorable to rapid transient cooling [15]; (2) TE coolers are easy to control
proportionally by varying the current, and therefore can be operated in either
steady-state mode for maximum COP, or can be switched to operate in transient
mode for maximum cooling power; (3) TE coolers are very compact and can be
distributed across the vehicle, providing cold air directly to the occupants. Since a
TE-cooling system cannot cost more than a conventional cooling system in order
to be economically viable, these considerations set realistic quantitative goals to
discover a synthesis technique that can produce large quantities of thermoelectric
nano-scale material with ZT = 2.

How do low-dimensional materials improve the ZT? In bulk materials, all
three properties that govern ZT, S, σ, and κ are related. For instance, by increas-
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ing the carrier density, n, one does increase the electrical conductivity, but this
decreases the Seebeck coefficient. In fact, the numerator of Eq. (1), S2σ, which
is also referred to as the “power factor”, is optimized [4] for degenerately-doped
narrow-gap semiconductors with n ≈ 1019 cm−3, and a value of S = 170 µV/K.
The thermal conductivity κ of such semiconductors is dominated by heat conduc-
tion through phonons, κL. The mechanisms that decrease κL such as alloying,
do decrease the electron (or hole) mobility µ as well, thus affecting σ. It is the
hallmark of low-dimensional thermoelectric materials that the introduction of a
new design parameter, the characteristic length scale d of the material, eases the
limitations that arise from this interrelation. The characteristic length scale d

can be the thickness of the quantum well in a two-dimensional system (2D), the
diameter of a quantum wire in a 1D system, or of a quantum dot in a 0D system.
There are three mechanisms through which this works.

Firstly, low-dimensional systems can have a reduced lattice thermal conduc-
tivity κL without too high a loss in mobility µ. This may arise because the phonon
mode structure is affected by the low-dimensionality, or because the phonon mean
free path `ϕ is limited by d, while the electron mean free path `e is less so. Obvi-
ously, this requires that the condition `ϕ ≈ d ≥ `e hold.

Secondly, the Seebeck coefficient in low-dimensional systems at a given car-
rier concentration is expected to be enhanced over that of 3D systems, for two
reasons: size-quantization effects and electron energy filtering. To explain this,
we refer to the Mott relation for the Seebeck coefficient. We can associate an
electrical conductivity σ(E) to the electrons that fill the energy levels between E

and E+dE, irrespective of the mechanism that limits σ(E). The total electrical
conductivity is then the integral of this over the entire energy range, moderated
by the Fermi distribution function f0(E). Integrating by parts, the total conduc-
tivity is

σ =
∫ ∞

0

σ(E)
(
−∂f0(E)

∂E

)
dE. (2)

Cutler and Mott [16] derive the Seebeck coefficient in this formalism to be the
differential form of the Mott relation

S =
kB

q

1
σ

∫ ∞

0

σ(E)
(

E − EF

kBT

)(
∂f0(E)

∂E

)
dE. (3)

In systems in which the Fermi statistics are degenerate, such as metals and degen-
erately doped semiconductors, Eq. (3) simplifies to the better-known form of the
Mott relation

S =
π2

3
kB

q
kBT

{
d[ln(σ(E))]

dE

}

E=EF

, (4)

which is generally valid, whether conduction is through band states, localized
states, hopping or other mechanisms. In the particular case of band conduction,
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the differential conductivity can be expressed by the product of the density of car-
riers n(E), which is a function of the density of states g(E), and their differential
mobility µ(E) or relaxation time τ(E):

σ(E) = n(E)eµ(E) = n(E)e2 τ(E)
m∗ , (5)

where e is the free electron charge, and m∗ the effective mass (in solids with
non-parabolic bands, m∗ = m∗(E)). From Eqs. (3) or (4), it is clear that any
mechanism that enhances the energy-dependence of the conductivity dσ(E)/dE,
will enhance the Seebeck coefficient S. There are two ways to enhance dσ(E)/dE,
namely enhancing dn(E)/dE or enhancing dµ(E)/dE. We now review the two
mechanisms separately.

Increasing dn(E)/dE can be achieved by enhancing the dependence of the
density of states on energy, dg(E)/dE. The size-quantization effect does this in
low-dimensional structures. Indeed, we show in Fig. 1 the energy dependence of
the density of states in 3, 2, 1 and 0D structures. The density of states function

Fig. 1. Energy dependence of the electronic density of states in 3-, 2-, 1- and 0-

dimensional crystals.

results [17] from a dispersion relation E(k) in which electrons have, as quantum
numbers, a momentum k along 3, 2 or 1 axes of the crystal in 3, 2, or 1D, and a
set of fixed quantum numbers (1, 2, 3. . . ) along directions in which the motion is
constrained (1 direction in 2D systems, 2 directions in 1D systems, all 3 directions
in 0D systems). It is quite obvious that the sharp maxima in g(E) of quantum wires
seen in Fig. 1 will result in a strong increase in the Seebeck coefficient via Eqs. (3)
or (4). While the concept of thermoelectric transport in low-dimensions is quite
old [18], the prediction that the figure of merit should be enhanced through this
effect was behind the seminal papers by Hicks and Dresselhaus [7, 8]. Quantitative
calculations of this effect, and its experimental verification, are given further for
bismuth nanowires.

An increase in the energy-dependence of the mobility dµ(E)/dE can result
from increasing the scattering time’s energy dependence, dτ(E)/dE, by preferen-
tially scattering electrons depending on their energy: this is what we mean with
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electron energy filtering. In conventional semiconductors with parabolic bands, it
is customary to ascribe a power-law dependence to the relaxation time

τ = τ0E
λ− 1

2 . (6)

The origin of this very coarse formula is as follows. The relaxation time is the
inverse of the scattering probability, which is in turn determined by two factors:
(1) the density of initial and final states, which gives rise in 3D solids to the factor
E1/2 (see Fig. 1), and (2) the probability matrix element which, very schemati-
cally, gives rise to the factor Eλ. λ is the scattering exponent, approximated [19]
for various scattering mechanisms as: λ = 0 for scattering of electrons on acoustic
phonons, λ = 1/2 for scattering of electrons on neutral impurities, and λ = 2 for
scattering of electrons on ionized impurities. It was recognized since the early days
of the development of semiconductor thermoelectric technology that an increase in
λ could be beneficial, and obviously ionized impurity scattering would effect that.
Ioffe himself proposed [4] counter-doping PbTe to increase λ; unfortunately the
mobility was much decreased [20] in counter-doped PbTe. In contrast to the PbTe
case, the technique did appreciably enhance the ZT of counter-doped bismuth [21].

Several other descriptions exist detailing how nanostructures can increase the
Seebeck coefficient by filtering electrons according to their energy, using several
other models besides scattering. We mention in particular the use of potential en-
ergy barriers in 2D structures [22], which can create minibands in the energy band
structure. Such minibands could also filter electrons according to their energy.
Another possibility is akin to hot electron injections from a potential barrier [23],
which again selects carriers from a given energy range. When conceiving of semi-
conductor heterostructures for thermoelectricity, it is useful to bear in mind that
only majority-carrier systems are advantageous, as any recombination mechanism
with minority carriers is a loss [24] that detracts from the overall device efficiency.

The following two paragraphs summarize recent development in two low-
-dimensional thermoelectric systems, bismuth nanowires, and lead–telluride com-
posites that include quantum dots.

2. A quantum-wire system: bismuth nanowires

2.1. Theory

In bulk, bismuth is a semimetal with a Brillouin zone and Fermi surfaces
shown in Fig. 2a. In essence, the holes fill two half-pockets at the T -points of
the Brillouin zone, and the electrons fill six half-pockets at the L-points; the
energy level of the bottom of the conduction bands overlaps that of the top of the
valence bands by 38 meV at 4.2 K. Lin et al. [25] consider the case of quantum
wires of diameter d prepared from Bi, and with a long axis oriented along the
crystallographic [011̄2] axis. This lifts the degeneracy between the electron pockets:
one (or two halves) pocket presents its smallest cross-section to that orientation,
and is labeled L(A), the other two (four halves) present a larger cross-section and
are labeled L(B, C). The energy dependence of the band minima of these pockets,
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Fig. 2. Part (a) shows the Brillouin zone of bulk Bi, with the Fermi surfaces (labeled

A, B, C) of the electrons at the L-points and the holes at the T -points. A series of

maxima in the band structure also exist at the L-points, so that L-point holes can exist

in p-type doped samples or in Bi quantum wires. The [011̄2] direction is close to the

one obtained by connecting the Γ point with the L(A) point in (a). Part (b) shows the

subband structure at 77 K of Bi quantum wires oriented along the [011̄2] direction, as a

function of wire diameter. It shows the energies of the highest subbands for the T -point

hole carrier pocket as well as for the L-point holes, and the lowest subbands for the

L-point electron pockets (A, B and C). The zero energy refers to the conduction band

edge in bulk Bi. The conduction subbands move up in energy as the wire diameter de-

creases, while the valence subbands move down. A semimetal–semiconductor transition

occurs at a diameter of 49 nm, where the highest T -point valence subband edge crosses

the lowest conduction subband edge formed by the L(B, C) electrons (figure reprinted

with permission from Y.-M. Lin, X. Sun, M.S. Dresselhaus, Phys. Rev. B 62, 4610

(2000). Copyright (2000) by the American Physical Society).

and of the band maxima of the hole pockets, is shown [25] as a function of wire
diameter in Fig. 2b. The electron and hole bands cross at a diameter near 49 nm:
there is a metal to semiconductor transition in quantum wires at that diameter.
Lin et al. [25] further calculate the thermoelectric figure of merit in 1D, ZT1D, for
these quantum wires as a function of the position of the Fermi level. The results at
77 K are shown in Fig. 3 as a function of the density of electrons in n-type doped
material. Two conclusions can be drawn. Firstly, as expected from the arguments
in the introduction, the ZT value is greatly enhanced over that of bulk Bi along
the trigonal axis, for which ZT = 0.15 at 100 K [26]. Secondly, ZT is a very
strong function of the exact doping level. This also can be understood intuitively:
the enhancement of the Seebeck coefficient results from the sharp dependence
of g(E) upon E, but this effect is maximal when the Fermi energy aligns fairly
exactly with the maxima in density of states shown for 1D systems in Fig. 1. As
a result, the doping optimization is much more critical to the design of quantum-
-wire thermoelectric materials than it is to bulk TE materials. We now turn to a
review of the experimental data on this system.
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Fig. 3. Calculated one-dimensional figure of merit Z1DT for n-type doped bismuth

nanowires, as a function of the electron density. The calculations are made at 77 K, for

wires oriented along the trigonal direction, for the three values of the nanowire diameter

indicated (figure reprinted with permission from Y.-M. Lin, X. Sun, M.S. Dresselhaus,

Phys. Rev. B 62, 4610 (2000). Copyright (2000) by the American Physical Society).

2.2. Sample preparation

All the data presented further are taken on macroscopic samples consisting
of nanowires imbedded in insulating porous host materials. The host materials
used are: (1) anodic porous alumina films grown electrochemically on metallic
aluminum with oriented pores of diameters ranging from 7 to 200 nm, (2) porous
alumina grains with pores on the order of 9 nm, (3) porous silica with pores of
15 nm, 8 nm, and 4 nm (the latter is Vycor glass, 98% SiO2). The anodic alumina
(1) films contain regular arrays of aligned pores, all parallel to one another and
oriented along the electrochemical growth axis. We review data on nanowires
made from three host species, bismuth, and also antimony and zinc.

In the past, the most frequently used techniques to introduce nanometer
diameter wires into porous host materials have used a high pressure to force molten
metal into the pores [27] or used glass capillaries filled with molten Bi, which were
then extruded into narrow wires [28]. More recently, we described a vapor-phase
method [29, 30] shown here in Fig. 4. The sample preparation process is as follows:
in a cryopumped vacuum chamber, the porous host material is placed on top of
a crucible which is resistively heated. A cover plate with a separate heater caps
the assembly, which is held in place by a clip. In a first step, after the assembly
has been pumped down to a base pressure of about 10−8 Torr, both heaters are
used to outgas the host material at about 650◦C. In the second step, both heaters
are set to an operating temperature of about 480◦C for Zn, and 590◦C for both
Bi and Sb. The charge of the guest metal is heated so that metal vapor fills the
crucible, passes through the porous host and escapes into the vacuum. After a few
minutes, the temperature of the top heater is decreased first, and then the whole
assembly is slowly cooled, while a temperature gradient across the porous host is
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Fig. 4. Schematic diagram of the vapor-phase method to prepare nanowires in porous

host materials.

maintained so that nanowires of the guest metal condense in the pores, from top
to bottom. The process is stopped once the pores are filled with metal.

Samples prepared as described above are macroscopic nanocomposites, and
can be handled and measured as bulk samples. Scanning electron micrographs of
Bi-impregnated anodic Al2O3 (200 nm) and SiO2 (15 nm) are shown in Fig. 5.
The anodic alumina is a plate, 50 µm thick, in which the pores are aligned and
traverse the sample from end to end, as can be seen in Fig. 5a. The other host
materials consist of many grains with pores randomly oriented. Two SiO2 grains
are visible in Fig. 5b, with the pores visible as dark spots. Some pores are filled
with Bi, and a few Bi nanowires are seen extending out of the foreground grain
in Fig. 5b. The samples can be mounted in conventional cryostats, and galvano-
magnetic and thermoelectric transport coefficients are measured using classical
steady-state methods.

Fig. 5. Scanning electron micrographs of (a) aligned Bi nanowires in anodic Al2O3

with dw = 200 nm and (b) SiO2 with dw = 15 nm pores containing a random network

of Bi nanowires, several of which can be seen protruding out of a grain. The scale

marker in (a) is 10 µm, in (b) 100 nm.
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2.3. Electrical resistance versus temperature

As it is impossible to assess how many nanowires are electrically connected
through the nanocomposite, it is not possible to estimate the effective cross-section
of the nanowires, and thus the electrical resistivity. Therefore, we show only the
temperature dependence of the resistance of the nanocomposites, normalized to
their room temperature (300 K) resistances. Figure 6 shows the temperature de-
pendence of the resistance of nanowires in the various host materials, constructed
from the data in several research papers. The data from aligned anodic Al2O3 com-
posites with d ≥ 38 nm are from Ref. [29], those in composites with d ≤ 15 nm
from [31] for the various diameters indicated. Two distinct behaviors are observed.

Fig. 6. Temperature dependence of aligned Bi nanowires in various host material, nor-

malized to their value at 300 K, for the diameters indicated. The resistance of bulk Bi

is also shown. The data for wires of diameters are taken on samples in anodic Al2O3,

Ref. [29]; the data on wires of diameters 15 nm are on composites based on porous SiO2

or Al2O3 with random pores (after Ref. [31]). The data are points; the lines are fits to

Eq. (7).

Bulk Bi has a positive dR/dT slope, because, even though the electron and hole
densities increase by about one order of magnitude between 70 and 300 K in that
semimetal [32], the phonon-limited mobility decreases with temperature almost as
a T−4 law [32]. The 200 nm and 70 nm diameter wires are also semimetals: they
have dR/dT > 0 below 100 K, where the carrier density is rather temperature-
-independent and phonon scattering contributes to a negative temperature coeffi-
cient of mobility, even though scattering on the wire boundaries dominates. Above
100 K, the carrier density increases with temperature in semimetallic Bi [32], and,
since boundary scattering dominates, the temperature dependence of the mobility
is much weaker than in bulk. Nanowires with diameters of 49 nm or less have
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a dR/dT < 0 over the entire temperature range, implying that the carrier den-
sity is now temperature-dependent at all temperatures. This is evidence for the
metal-to-semiconductor transition that occurs at a diameter of about 49 nm [25].

The d = 15 nm sample, and the d = 9 nm sample at high temperature,
display an activated behavior, with an energy Eg, following a law:

R(T ) = R0e−Eg/kBT . (7)

Fits of Eq. (7) to the data, along with the resulting values of Eg, are given in
Fig. 7. In this regime of temperatures and diameters, we believe that the behavior
is that of a classical near-intrinsic semiconductor with band conduction and an
energy gap Eg.

The sample with d = 4 nm, and the d = 9 nm sample at low temperature,
display a temperature dependence that follows a R(T ) ∝ T−1/2 power-law; we will
show further that this is indicative of 1D localization.

2.4. Optical reflectivity and diameter-dependence of the energy gap

The optical reflectivity spectrum of a Bi/SiO2 composite, with 8 nm pores
was also reported [33] and shows the presence of an energy gap around 0.4 eV.
We can now summarize in Fig. 7 the values obtained for Eg from both transport
and optical measurements, for wires of different diameters. These experimen-
tal values are compared in Fig. 7 with the theoretical energy gap between the
L-point conduction bands and the T -point valence band for semiconducting bis-
muth nanowires. This gap has been calculated in Fig. 2 of Ref. [25] for nanowires
oriented along the [011̄2] direction of Bi, and can be calculated for wires along
the trigonal direction as well (see Fig. 7). As the experimental data come from
polycrystalline samples, we expect them to lie in between the two curves, as in-
deed is the case. In conclusion, the bismuth nanowires do show the metal-to-

Fig. 7. Comparison of the experimental values of Eg obtained from Fig. 6 and Ref. [33]

for various nanowire diameters, with the calculations of Ref. [25].
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-semiconductor transition as predicted and the dependence of the energy gap on
nanowire diameter in the semiconductor regime is also quite consistent with the
calculations.

2.5. Thermoelectric power

The Seebeck coefficient of aligned metallic bismuth nanowires, 200 nm in
diameter, imbedded in anodic alumina, has been reported [34] on several samples,
including some of n-type doped bismuth. One curve, on intrinsic semimetallic
Bi, is reproduced here in Fig. 8. The Seebeck coefficient is essentially linear with

Fig. 8. Absolute value of the Seebeck coefficient of semimetallic bulk Bi [26] and 200 nm

diameter wires [34] in anodic alumina as well as of semiconducting 15 nm (in SiO2) and

9 nm (in Al2O3) diameter Bi nanowires, and finally of 4 nm diameter wires in Vycor

glass [31]. The dashed line through the data on 9 nm Bi shows a T−1 law.

temperature below about 90 K, then flattens, as it does in bulk Bi [26] (also shown).
Two samples of pure Bi nanowires, and one of Bi n-type doped with Te, have been
measured. In the original publication [34], the Shubnikov–de Haas measurements
were taken on the same samples of these semimetallic wires, and their frequencies
yielded the densities of electrons and holes in the samples. From these, assuming
that the band structure of bulk Bi holds for wires of this large diameter, the authors
calculated the partial electron and hole diffusion thermopowers, and, assuming
that the partial mobilities scale as the effective masses, the total thermopower.
Below 90 K, the calculated results agree with the data remarkably well, given
that there are no adjustable parameters in the calculation; the band structure of
bismuth is known [35] to vary strongly with temperature above 100 K.

The thermopower of semiconducting bismuth nanowires with diameters [31]
from 15 to 9 nm is also reproduced here in Fig. 8, along with an extension to 4 nm
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diameter wires. A striking increase in the thermopower is observed as the wire
diameter is decreased from 200 nm to 9 nm, followed by a decrease for 4 nm wires.
The temperature dependence of the 9 nm wires follows a T−1 law at high tem-
peratures, as expected for nearly intrinsic semiconductors, but the thermopower
decreases at low temperatures. This behavior is consistent with the decreased ther-
mopower observed in the 4 nm wires. The strong enhancement of the thermopower
is only observed when the resistivity follows an activated behavior, Eq. (7), char-
acteristic of a semiconductor, and not when the resistivity follows a T−1/2 power
law. We now ascribe this observation to localization effects.

2.6. Localization effects

Localization effects are most typically evidenced in magnetoresistance data,
such as we show in Fig. 9 for Bi and Zn nanowires. Localization effects are
quantum-mechanical corrections to the propagation of electrons. Considering only
classical mechanics, any imperfection in a narrow quantum wire could completely
block the passage of electrons at low temperature, and thus stop the electrical
conductivity. In quantum mechanics, imperfections in a narrow wire can interfere
with the wave functions of electrons propagating along that wire. These wave
functions can then reconstruct constructively or destructively downstream from
this imperfection. This results in an increase or decrease in the transmission prob-
ability of the electron across the imperfection. The determining factor for this
effect is the length over which the electron wave functions conserve information
about their phase, the phase coherence length Lφ. The phase of the wave function
is further affected by the amount of magnetic flux in the obstacle that interfered
with the wave function, and therefore the magnetic flux affects the conductivity
of the wire and generates magnetoresistance. These basic ideas are expressed in
the following equation, which describes the variations of the electrical resistance
R0 in a one-dimensional system with magnetic field and temperature [36]:

∆R(T, H)
R0

=
e2ρe

2πh̄A

[3
2

(
L−2

φ +
4
3
L−2

s.o. + L−2
H

)−1/2

−1
2

(
L−2

φ + L−2
H

)−1/2 ]
, (8)

as a function of the resistivity ρe of the wire, its cross-sectional area A, and the
following lengths. LH is the magnetic length (H = magnetic field):

LH =

√
h̄

2eH
. (9)

Ls.o. is the spin–orbit scattering length, important in Bi but much less so in lighter
elements, such as Zn. Lφ is the phase-coherence length [36], the decay length
that characterizes the loss of phase coherence of the electron wave function as it
propagates further around the imperfection. It is responsible for the tempera-
ture dependence of the resistance and magnetoresistance, typically as a power law
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Fig. 9. Magnetic field dependence, at several temperatures, of the magnetoresistance of

10 nm diameter Bi (a) and 9 nm diameter Zn (b) nanowires. The Bi are oriented inside

anodic alumina with the magnetic field oriented perpendicularly to the current direction.

Very similar results are obtained in a parallel magnetic field. The Zn nanowires are

inside randomly oriented pores in Al2O3. The vertical lines indicate the value of the

magnetic field at which the flux inside a wire cross-section is one fluxon. The sign of

the localization magnetoresistance is negative in Zn, where spin–orbit interactions are

weak, and positive in Bi, where they are strong (after Refs. [37, 33] and [39]).

Lφ ∼ T−p. Lφ is limited by inelastic scattering events, for instance scattering by
phonons for which p = 3/2, or scattering by other electrons for which p = 1.

The “step”, or change in the slope, in magnetoresistance occurs [37] at a value
of the magnetic field where the magnetic length LH equals the wire diameter, that
is when one quantum of flux exactly fits inside a nanowire. This suggests that
the step is due to one-dimensional localization (Eq. (8)). To further bolster the
argument, we point out that the magnetic length, Eq. (9), depends only on the
value of H and not on any material parameter, such as the effective mass. Thus,
the field at which these localization effects is observed should be independent
of the solid from which the nanowires are made. The experiment was therefore
repeated using Sb [38] and Zn [39] nanowires prepared in the same way as the Bi
nanowires, and the magnetoresistance for Bi and Zn nanowires of similar diameter
is shown in Fig. 9. The magnetoresistance step is consistently observed at the
predicted magnetic field, irrespective of material. The data in Fig. 9 fit Eq. (8) very
well [39]. The localization magnetoresistance in Zn, where spin–orbit interactions
are negligible, is negative; in Bi, where spin–orbit interactions dominate, it is
positive. This effect is sometimes labeled “antilocalization”.

The question is of course what becomes of the Seebeck coefficient in the
localization regime. In order to answer that, it is advisable to dissociate the
localization effects from the metal-to-semiconductor transition observed in Bi, and
this is the reason why the study was carried out on Zn nanowires, which are always
metallic. The results are shown in Fig. 10, where we report the temperature
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Fig. 10. Temperature dependence of (a) the normalized resistance and (b) of the See-

beck coefficient of Zn nanowires of the diameters indicated (after [39]).

dependence of the resistance (normalized to 300 K) and of the thermopower of Zn
nanowires of different diameters. The 15 nm Zn wires are metallic, as evidenced
by their positive dR/dT , and also by their magnetoresistance. The narrower wires
have a resistance that follows a T−1/2 law, as did the 4 and 9 nm diameter Bi
nanowires; the magnetoresistance on those wires is, as we saw above, indicative
of localized behavior. If we take this temperature dependence to be indicative of
an energy dependence of the electrical conductivity as a power law σ ∝ E1/2, or,
more precisely σ ∝ (E − Ec)1/2, where Ec = kBTc is some critical energy, then,
via the Mott equation (4), the Seebeck coefficient is

S = −π2kB/6q for T > Tc, (10a)

S = −π2kBT/6qT c for T < Tc. (10b)

This prediction, shown in Fig. 10, again contains no adjustable parameters.
It is very consistent with the data for the 4 nm Zn nanowires, indicating again
the validity of the Mott formula (4). It also shows that it is possible to achieve a
thermopower on the order of 130 µV/K in metallic nanowires.

In contrast to the case of Zn nanowires, the localization effects seen in the
magnetoresistance (Fig. 9) of the 10 nm Bi nanowires is on the order of 15%,
only about a factor of 2 smaller than the change in resistance with temperature
seen in Fig. 7 between 230 K and 1 K (the T−1/2 part of R(T )). Localization is
expected to be more dominant yet in the 4 nm Bi wires, in which the thermopower
is decreased in comparison to that of the 9 nm wires. We can conclude that the
decrease in Seebeck coefficient seen in 4 nm Bi nanowires is due to localization
effects. Therefore, there is an optimum wire diameter, on the order of 9 nm in
Bi. Size-quantization effects enhance the Seebeck coefficient with decreasing wire
diameter at diameters above the optimum, but localization effects decrease the
Seebeck coefficient at diameters below the optimum.



624 J.P. Heremans

2.7. Thermal conductivity

Figure 11 shows the temperature dependence of the thermal conductance of
some samples of Bi/Al2O3 and Zn/Al2O3 nanowire composites [40], along with
the thermal conductivity of bulk Bi [26]. Irrespective of the material in the pores,
the conductance shows a decrease from room temperature to a plateau, followed
by a Tn law upon further cooling, with n ≈ 1.2 to 1.4. The thermal conductiv-

Fig. 11. Temperature dependence of the thermal conductivity of bulk Bi [26] (right

ordinate) compared to the thermal conductance of 2 samples of 200 nm Bi nanowires

imbedded in oriented anodic alumina, and of one sample of 9 nm Zn nanowires in

randomly oriented porous alumina (left ordinate axis) [40].

ity of bulk Bi, which is phonon-dominated, follows the characteristic temperature
dependence of the lattice thermal conductivity of dielectric crystals. From this,
we conclude that the alumina matrix conducts most of the heat, even though the
thermal conductivity of Bi is 2 orders of magnitude larger than that of glasses at
room temperature. Still, it is worth pointing out one discrepancy: the observed
temperature dependence is somewhat different of that of a glass, where the expo-
nent n ≥ 1.8. A power law exponent lower than the expected value suggests the
following thoughts. Firstly, we would have expected the heat conduction of the
Bi nanowires in that temperature range to be one-dimensional, as the dominant
phonon wavelength at 10 K in bulk Bi is 160 nm [40], and this would lead to a
thermal conductance with n = 1. Secondly, for Zn nanowires with a resistance
given in Fig. 11, the Wiedemann–Franz law would lead to an electronic thermal
conductance with n = 1/2. Nevertheless, while the observed temperature depen-
dence raises questions, the magnitude of the thermal conductance is compatible
with a thermal short through the porous host material. This makes it impossible
for the Bi nanowire composites to achieve a high value of ZT with the current
state of the technology. Nevertheless, Bi nanowires are an excellent scientific plat-
form on which the concepts of low-dimensional thermoelectric materials have been
tested.
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2.8. Other quantum-wire systems

Several extensions to the work on bismuth nanowires have been reported,
which we briefly review here.

Firstly, the work on Bi nanowires has been extended to the isoelectronic
Bi1−xSbx alloys. Below about 150 K, these alloys in bulk form are excellent
thermoelectric materials [41] and are semiconductors for 7% < x < 22%. The
situation above 150 K is less clear, as it is known [35] that the band structure
of the semimetal Bi is quite temperature-dependent, but the mixed effects of
Sb-alloying and temperature are unknown at this point. Bi1−xSbx alloy quan-
tum wires are expected to have a better thermoelectric performance than Bi wires
of the same diameter, especially for p-type material. It has been possible to calcu-
late a phase diagram of Bi1−xSbx alloy nanowires as a function of Sb concentration
and nanowire diameter [42]. The phase diagram predicts two semimetal regimes,
one Bi-like with holes at the T -point and one Sb-like with holes at the H-point,
and two indirect semiconducting regimes with gaps between L-point electrons and
either T or H-point holes. There is one singular point at the condition where the 10
hole pockets (about the T -point, the 3 L-points and the 6 H-points in the Brillouin
zone) coalesce in energy. At this point (wire diameter of 60 nm, and x = 13%)
the density of states is particularly high, which is beneficial for increasing the
magnitude of the Seebeck coefficient. The diagram also predicts that the critical
diameter at which the overlap between the L-point electron subbands and the
T -point hole subbands vanishes (semimetal-to-semiconduc tor transition), is
shifted to higher diameters as Sb is added to pure Bi. We therefore expect to
obtain better thermoelectric performance in Bi1−xSbx (x ≈ 20%) when compared
to pure Bi nanowires.

Secondly, the calculations have been extended to the case of segmented
nanowires, in which alternate regions of two materials are grown along the length
of the nanowire like segments on a bamboo stick. The thermoelectric proper-
ties of such quasi-zero-dimensional structures have been calculated for the case of
PbTe/PbSe and PbSe/PbS segmented nanowires [43], and ZT values considerably
higher than in nanowires made from random alloys of comparable composition are
expected.

3. Quantum-dot systems

3.1. Quantum-dot superlattices

Springholz et al. [44, 45] grew PbSe/PbEuTe superlattices in which a three-
-dimensional array of islands formed spontaneously, with dimensions small enough
that they can be considered as quantum dots. Harman and co-workers [10] de-
veloped MBE grown PbTe/PbTe1−xSex quantum dot superlattices (QDSL), in
which small quantum dots with a higher Se content grew at the interface between
the PbTe regions and the alloy regions. Figure 12 shows [46] the structure of
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Fig. 12. Structure (a) and plan-view scanning electron micrograph (b) of a

PbTe/PbSe1−xTex quantum-dot superlattice (after [46]).

such superlattice and a scanning electron microscope image of it. When viewed
from a 3D standpoint, these quantum dot superlattices can be interpreted as a
PbTe host into which quantum dots are introduced in a periodic way in all three
(x, y, z) directions.

This technique creates materials with a high thermoelectric figure of merit:
in 2000, Harman et al. reported [47] ZT = 0.9 at 300 K, double the ZT of
PbTe, which in bulk material reaches a maximum of 0.45. In 2002 they reported
[10] ZT = 2 at 300 K in PbTe/Pb1−ySnyTe1−xSex QDSLs with x = 98% and
y = 16%. Later yet [11], QDSLs were reported to have reached ZT = 3 at 450 K.
What mechanisms are responsible for these results?

Firstly, the lattice thermal conductivity is strongly reduced. The ther-
mal conductivity for the n-type PbSeTe/PbTe QDSLs is [10] on the order of
0.58 to 0.62 W/(m K). Subtracting an estimate for electronic thermal conduc-
tivity κE made using the Wiedemann–Franz law and the electrical conductiv-
ity, this leaves κL ≈ 0.33 W/(m K) (lower values yet are possible in quaternary
Pb0.84Sn0.16Se0.98Te0.02/PbTe QDSLs). The lattice thermal conductivity of an
equivalent 16% random PbSeTe alloy is [3] 1.25 W/(m K), so that the first effect
of the quantum dots is reduce κL by a factor of almost 4, and probably more for the
quaternary QDSL. On the other hand, the electron mobility of a similar PbSeTe
alloy at a very low doping level is [3] 1,000 cm2/(V s), and the 300 K mobility in
lead salts is not [48] very sensitive to doping levels up to 2×1019 cm−3. Compared
to the ternary n-type QDSLs, the mobility reduction is only on the order of 3 or
somewhat less.

The second mechanism increasing ZT in QDSLs is a boost in the Seebeck
coefficient over that of bulk material of the same carrier density. Figure 13 shows
the room-temperature absolute value of the Seebeck coefficient of the samples de-
scribed in Ref. [10] (crosses) as a function of the carrier density, alongside with
data for a bulk sample (open dot) and other samples that will be described later
(full dots). The full line gives the Seebeck coefficient for bulk PbTe, assuming
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Fig. 13. The absolute value of the Seebeck coefficient of PbTe as a function of the

carrier density. The full line gives the dependence for bulk PbTe, assuming acoustic

phonon scattering, and the open dot is an experimental data point. The crosses are the

data of Harman et al., the full dots correspond to measurements taken on Pb-rich PbTe

with nanoprecipitates of metallic Pb.

acoustic phonon scattering. This plot shows that the thermopower is consider-
ably enhanced in the QDSLs, compared to bulk samples. As, for the case of
Pb0.98Sn0.02Se0.13Te0.87 QDSLs the mobility remains above 500 cm2/(V s), the
power factor S2σ is quite impressive. The exact mechanism for this enhancement
is not clear at the moment, and several theories are emerging, based on either
scattering (see Eq. (6)) or other [22, 23] energy filtering ideas, as outlined in the
introduction. We shall see further, in the case of PbAgSbTe alloys, that there are
more possibilities yet.

3.2. Nanoprecipitates in bulk PbTe

The MBE-grown films described above [10] provide the proof-of-principle
that materials with ZT = 2 do exist, but they can only be prepared in very small
quantities and are thus suited mostly to applications that do not require large
power dissipations. It would be desirable for widespread applications to synthesize
similar materials in bulk form. Grinding and sintering nanograin thermoelectric
materials offer one approach, used in both PbTe [49] and skutterudites [50], and,
as in QDSLs, the thermal conductivity is reduced. Unfortunately, the mobility is
reduced too, but this is partially offset by an increase in the Seebeck coefficient
in the nanograined material compared to the Seebeck in bulk material of similar
carrier density [49, 50]. It was shown [49] that this is due to an increase in the
energy dependence of the relaxation time, the “scattering parameter”, and we will
summarize that experimental proof here, but using a more favorable thermoelectric
material system: PbTe with nanoprecipitates.
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It has been [51] known for a long time that bulk lead-rich PbTe samples
can be prepared with lead inclusions. Using conventional metallurgical heat treat-
ments analogous to those developed for the precipitation hardening of aluminum
alloys [52, 53], bulk PbTe sample enriched with 6% Pb were prepared and ana-
lyzed recently [54] that contained nanometer-scale precipitates of metallic Pb. The
evidence the authors present for the presence of metallic Pb is threefold: X-ray
diffraction (XRD), scanning electron micrography (SEM), and a superconductive
phase transition. A conventional Scherer analysis [55] was then used to determine
the crystallite size of the Pb precipitates, which were on the order of 30 to 40 nm.
When left undoped, the Pb-rich PbTe samples are n-type, but they can be counter-
-doped p-type with thallium. The authors [54] also report the behavior of
Ag-doped PbTe. At low concentrations (< a few 1019 cm−3) silver is a con-
ventional p-type dopant [56]. PbTe doped with Ag in the high-1019 cm−3 range
turns out n-type, and displays XRD spectra, SEM images, and a partial super-
conductive transition similar to the Pb-rich samples. This suggests the presence
of metallic Pb inclusions, perhaps because Ag binds preferentially with Te, liber-
ating Pb atoms to precipitate. An SEM image of such PbTe:Ag sample is shown
in Fig. 14.

Fig. 14. Scanning electron micrographs of a PbTe:Ag sample showing nanoprecipitates

(after [54]).

The transport properties of PbTe samples with nanoprecipitates are sum-
marized as follows. Firstly, the lattice thermal conductivity of all samples in this
study is calculated to be on the order of 2.5 W/(m K) at 300 K. Secondly, we show
the absolute value of the Seebeck coefficient of both n and p-type doped PbTe with
6% excess Pb as a function of the carrier density at 300 K in Fig. 13, alongside the
bulk data and those on QDSLs [10]. The Seebeck coefficient is enhanced almost
as much as for the QDSLs, and this was observed on the heavily-doped PbTe:Ag
samples as well, but not on Pb-rich PbTe with only 3% Pb. Thirdly, the power
factor S2σ reaches 20 µW/(cm K2), on par with optimally doped PbTe [2], due
once again to the effect of the nanoprecipitates on the mobility. The mobility of
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p-type PbTe:Tl sample is reduced dramatically, while that of n-type Pb-rich PbTe
is reduced by a factor of 3.5 compared to similarly prepared bulk PbTe.

In order to analyze the physical origin of the increase in the Seebeck coeffi-
cient, the authors applied the “method of the four coefficients” [49, 57]. In essence,
at each temperature, there are four unknown quantities for a given sample: the
carrier density, the carrier mobility, the effective mass, which can be enhanced by
size-quantization effects or other mechanisms that affect the density of states, and
the energy dependence of the relaxation time, which we choose to represent by the
scattering exponent λ in Eq. (6). In order to solve this system uniquely without
“fitting” some parameters, we need four experimental data, and these we choose
to be the resistivity, the Seebeck coefficient, the Hall coefficient, and the transverse
Nernst–Ettingshausen coefficient. The thermoelectric power S, the carrier concen-
tration p, and the electrical conductivity σ are functions of the Fermi energy EF

in the system, the carrier effective mass and the carrier scattering relaxation time
τ , which is given (Eq. (6)) for simple parabolic bands. The assumption that the
bands are parabolic does not hold for the valence band of PbTe, for which [56] the
Fermi surfaces are ellipsoids of revolution, and the energy dispersion relation is

h̄2kl
2

2ml
∗ +

h̄2kt
2

mt
∗ = γ(E) = E

(
1 +

E

Eg

)
, (11)

where Eg is the direct energy gap of PbTe, and k and m∗ are the electron wave
vector and effective mass (at k = 0) along the longitudinal (suffix l) and transverse
(suffix t) directions of the ellipsoids. The density of states is [56]:

g(E) =
√

2(md
∗)3/2

π2h̄3 γ′
√

γ(E), (12)

where γ′ is the derivative of γ with respect to E, h̄ is the Planck constant, and
md

∗ = (mlm
2
t )

1/3 is the density of states effective mass in which we include the
degeneracy number when the Fermi surface contains more than one pocket. We
saw that Eq. (6) contained two factors, the density of states and the transition
matrix element; for non-parabolic bands it follows that the energy dependence of
τe is given by [56]:

τ e = τ0
γ(E)λ−1/2

γ′(E)
. (13)

The carrier density is now

p =
(2m∗

dkBT )3/2

3π2h̄3

∫ ∞

0

γ(z)3/2

(
−∂f0

∂z

)
dz, (14)

where z = E/kBT is the reduced energy, so that γ(z) is given by (11) but with
z substituting for E. f0 is the Fermi–Dirac distribution function. The electrical
conductivity is [56]:
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σ =
(2md

∗kBT )3/2

3π2h̄3

e2

m∗
α

∫ ∞

0

γ(z)3/2

γ′(z)
τ(z)

(
−∂f0

∂z

)
dz, (15)

where e is the carrier charge, m∗
α is the effective mass along the crystallographic

direction of the sample studied, or the appropriate average mass for polycrystals,
and γ′(z) is the derivative of γ(z) with respect to z. The low-field (µB ¿ 1) Hall
coefficient is [56]:

RH =
3K(K + 2)
(2K + 1)2

1
pe

×

[∫∞
0
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(γ′(z))2 τ2(z)
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dz
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)
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]
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γ(z)3/2

γ′(z) τ(z)
(
−∂f0

∂z

)
dz

]2 , (16)

where K is the effective mass anisotropy coefficient, K = ml/mt. The Seebeck
coefficient is [56]:

S =
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e
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
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and the low-field (µB ¿ 1) isothermal Nernst coefficient is [56]:

N = RHσ
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Solving now Eqs. (13)–(18) at each temperature with the experimental values
[54] measured for the resistivity ρ, the thermoelectric power S, the low-field Hall
coefficient RH , and low-field isothermal∗ Nernst coefficient N , one can deduct
the density-of-states effective mass and the scattering parameter. The authors
observe first that in all cases, the resulting value for the density-of-states effective
mass remains at m∗

d = 0.12± 0.04 free electron masses, around the value reported
[58] for PbTe. Values for the scattering parameter λ are reported in Fig. 15: for
the bulk sample λ = 0.2 ± 0.2, indicative of the dominance of acoustic phonon
scattering. When applied to the samples with Pb precipitates the procedure gives
values of λ between 2.5 and 4, as shown in Fig. 15, irrespective of the carrier
type. We therefore conclude that an enhancement in the energy dependence of

∗Experimentally one measures the transverse Nernst–Ettingshausen coefficient by ap-
plying a temperature gradient to the sample and measuring a transverse voltage; the
sample is thus mounted adiabatically, and the quantity measured is the adiabatic Nernst
coefficient, not the isothermal one. The reader is referred to the original publications
[49, 54] for the correction factors to convert one to the other: in thermoelectric ma-
terials, like in all heavily-doped narrow-gap semiconductors, these corrections can be
substantial.
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Fig. 15. Temperature dependence of the scattering parameter λ of bulk PbTe with and

without (∇) nanoinclusions (after [54]).

the scattering time is at the origin of the increase in the Seebeck coefficient in
samples that include Pb nanoprecipitates.

3.3. AgPbmSbTe2+m

Another recent development in the field of bulk materials with nanometer-
-scaled inclusions, we mention the recently reported AgPbmSbTe2+m alloys [59]
that have ZT = 2.1 at 800 K. The role of the nanoinclusions in AgPbmSbTe2+m

is discussed in a subsequent paper [60]. Metallurgically, these bulk alloys are [61]
solutions of PbTe and AgSbTe2, the PbTe-equivalent of the GeTe-based TeAgGeSb
(TAGS) alloys [62], which also have nanometer inclusions [63]. This simple view
is not quite correct, however, and Bilc et al. point out that the material should
be regarded [60] as a PbTe lattice with Ag and Sb inclusions. Ag atoms introduce
new states near the top of the valence band of PbTe; isolated Sb atoms introduce
resonant states near the bottom of the PbTe conduction band. The Ag–Sb pairs
result in an increase in the density of states, compared to that of pure PbTe, right
around the band gap. As a result of the Mott equation once again, the Seebeck
coefficient, and thus the power factor S2σ are increased. The ubiquitous first
mechanism that boosts ZT in nanostructures, the reduction of the lattice thermal
conductivity, is also at work.

4. Summary

Thermoelectric technology has been one of the beneficiaries of the recent
progress in nanotechnologies as applied to semiconductor structures. Quantum-
-dot superlattices have experimentally shown [10] an improvement in thermoelec-
tric figure of merit by a factor of at least two over the best bulk thermoelectric
materials. In this review, we have summarized the physical origins of this im-
provement.
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The optimization of a thermoelectric material involves three parameters, the
electrical and thermal conductivities (σ and κ), and the Seebeck coefficient S,
which are inter-dependent and have to be optimized as a whole. The use of low-
-dimensional structures adds a new variable, which relaxes this inter-dependence,
and allows us to find a more favorable optimum. There are two main mecha-
nisms through which nanometer-scale materials improve the figure of merit, a
reduction of the lattice thermal conductivity, and an enhancement of the product
S2σ. The latter effect has been shown experimentally to arise through several
physical mechanisms: size-quantization effects in quantum wires (Bi), enhance-
ment of the local density of states in solids in which there are nanometer-sized
inclusions (AgPbmSbTe2+m), and electron energy filtering on nano-precipitates
(PbTe+6%Pb metal). The review also cites theoretical papers that outline more
possibilities.
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