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This paper investigates the control and the synchronization of a new 5D hyperchaotic system. Based on the
impulsive control theory, some new and less conservative criteria for the global exponential stability and asymp-
totical stability of impulsively controlled 5D hyperchaotic system, are obtained with varying impulsive interval.
Finally, numerical simulations are given to demonstrate the effectiveness of the proposed control and synchroniza-

tion methodology.
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1. Introduction

Recently, hyperchaotic systems have begun to attract
considerable attention due to their theoretical and practi-
cal applications in lasers [1], mechanical engineering [2],
and secure communication [3]|, and so on. Controlling
these complex dynamics for engineering applications has
emerged as a new and attractive field and has developed
many profound theories and methodologies [4, 5].

In this paper, we study the control towards an equilib-
rium point by impulsive control method of the 5th-order
hyperchaotic system given by [6]:

1 = a1(z2 — 1) + T2x3245,

&9 = az(x1 + T2) — T1X3T4Ts,

iy = —3 4 0.122,
T4 = —QA3T4 + T1T2T3T5,
&5 = —a4(x5 — T4) — 521 + T1T2T3Ty, (1)

where x1, T2, 3, T4, and x5 are state variables, ai, as,
as, a4, and ag are all positive real parameters. When we
selected the parameters as a; = 37, as = 14.5, a3 = 10.5,
as = 15, and a5 = 9.5, the system exhibits a hyper-
-chaotic behaviour.

2. Impulsive control of the 5D hyperchaotic
system

We decompose the linear and nonlinear parts of the 5D
hyperchaotic system in Eq. (1) and rewrite it as

&= Az + (), (2)
where

T = [r120132425) ",

—a; a1 0 0 0
as Qa9 0 0 0
A= 0 0 -1 0 0
0 0 0 —az3 O
as 0 0 a4 -—as

and
T2X3T4T5
—IL1T3L4T5
2
0.1z% . (3)
L1T2X3%5

o(x) =

T1X2X3T4

Then, the impulsive control of the critical system is given
by (6):

= Ax+ d(x), t#t,
A.Z‘:Bil', t:ti7 i:172,...7 (4)
x(t(—]i_) = To,

where t; denotes the instant when impulsive control oc-
curs. For convenience, define the following notation:

- 1
MA) = 5AmaX(A + AT,

ﬂi = >\max [(I + BZ)T(I+ B’L)] ) (5)
where I is the identity matrix, and Apax(A) is the max-
imal eigenvalue of matrices A.

Theorem 1 [17]:

e The trivial solution of the system (5) is globally

exponentially stable if A\(4) = 2 < 0 and there
exists a constant 0 < a < —A, such that Ing; —

Ol(tifti_l) SO,’L:LQ,

e The trivial solution of the system (5) is glob-
ally asymptotically stable if A\(A) = % > 0 and
there exists a constant « > 1, such that In(ag;)+
Atipr — 1) <0,i=1,2,...

3. Impulsive synchronization of the 5D
hyperchaotic system

In this section, we will study the impulsive synchro-
nization of two identical hyperchaotic systems. Let sys-
tem (5) be the drive system, and the response system is
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modeled by the following impulsive equation:

y=Ay+ ®(y), t#t,
Ay:Blyv t =1, 7':1a2aa (6)
y(tg) = Yo-
Consider the error vector
e=y—x=Ae+ P(y) — &(x). (7)

Then the error system of the impulsive synchronization
is given by
¢ = Ae+ d(y) — (),
Ae = Bie7 t= ti7
e(td) = yo — 0.
Similarly to the stabilization of the hyperchaotic system,
the value of o was calculated using theorem 1.

t# ti,
i=1,2,..., (8)

4. Numerical simulation

In this section, numerical simulations are given to ver-
ify the effectiveness of the impulsive control and synchro-
nization of hyperchaotic 5D system. The fourth-order
Runge-Kutta integration method is used to solve the sys-
tem with time step size equal to 0.0001, the initial values
are [2,—2,3.5,—-3.5,5].

We start by calculating the matrix A + AT =

—20 50 0 -10.6
50 0 0 1
0 0 -5 0 ’

—-106 1 0 0
eigenvalues, which are: 96.35, —23.20, —2.00, 26.01,
and 50.55. Then, the maximal eigenvalue is A(A) =
50.55 > 0. If we choose the gain matrices B;, (i =
1,2,...) as a constant matrix B = diag(by, ba, b3, bs, b5) =
(—0.95,—-0.95, —0.95, —0.95, —0.95), then it is easy to see
that: 8 = max ((1+b1)2, (1+ b)?, (14 bg)2, (1 + by)?,
(14b5)?) = 0.0025. The estimates of bounds of stable re-

In a+1n(0.0025)
50.55

after that we calculate the

gions are given by 0 <7 < — . If we choose

a =2, then 0 <7 <0.15.

st

g8 3

Fig. 1.
grating numerically the system (1).

The hyperchaotic attractor obtained by inte-

Figure 1 shows the attractor of the 5D hyperchaotic
system, Fig. 2 shows the impulsive control with 7 = 0.10 s
of the 5D hyperchaotic system to origin when control
is activated at t = 2.5 s. As can be seen, the system
stabilizes after 0.5 s. If the impulse intervals are too
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Fig. 2. Impulsive control with 7 = 0.10 s of the new

hyperchaotic system to origin when control is activated
at t =2.5s.

large 7 > 0.3, the impulsively controlled system cannot
be stabilized, as shown in Fig. 3 with 7 = 0.6.
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Fig. 3. Impulsive control with 7 = 0.6 s of the new

hyperchaotic system to origin.

e

e

e

o 8" N

Fig. 4. Synchronization errors of two 5D hyperchaotic
systems with 7 = 0.05 when control is activated at
t=>5s.

Figure 4 shows the results when 7 = 0.05. It is clear
that with this impulsive control, two identical 5D hyper-
chaotic systems synchronize very fast.

5. Conclusion

This paper has studied the impulsive control and syn-
chronisation of 5D hyperchaotic system. Some new and
less conservative criteria for the global exponential sta-
bility and asymptotical stability of impulsively controlled
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hyperchaotic system are obtained with varying the im-
pulsive intervals. The performances of the proposed ap-
proach have been verified by the numerical simulations.
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