
Vol. 129 (2016) ACTA PHYSICA POLONICA A No. 1

The Effects of Viscosity on the Structure
of Shock Waves in a Non-Ideal Gas

R.K. Anand∗ and H.C. Yadav
Department of Physics, University of Allahabad, Allahabad-211002, India

(Received August 1, 2013; in final form January 5, 2016)
This work presents the structure of viscous shock front in a non-ideal gas. The analytical expressions for

the particle velocity, temperature, pressure and change-in-entropy within the shock transition region are derived
taking into consideration the Landau and Lifshitz equation of state for non-ideal gas. The effects on the structure
of shock front due to the variations of the coefficient of viscosity, Mach number, adiabatic exponent and parameter
of non-ideality of the gas are investigated. The model developed in the paper is valid only for small values of Mach
number M i.e., M < 2.5.
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1. Introduction

Shock waves arise in a wide range of physical phenom-
ena such as gas dynamics, nuclear explosions, shallow
water flows, supernovae, stellar winds, traffic flows, quan-
tum fluids, and many others. The theory of shock waves
has a rich history beginning with the fundamental con-
tributions by Riemann in the mid of the 19th century.
In fact, all natural fluids admit some compressibility and
therefore support shock waves. Shock waves can only
develop in a medium which behaves like a fluid. Shock
waves may be produced in fluids such as sea water by
a variety of natural and artificial mechanisms. The flow
parameters such as pressure, density, temperature, par-
ticle velocity and entropy change very rapidly in the thin
transition layer, through which the gas passes from its
initial state of thermodynamic equilibrium into its final,
also equilibrium state. Here, the thermodynamic equi-
librium inside this region is called the shock front and
it can be substantially disturbed. Therefore, in study-
ing the internal structure of a shock front it is necessary
to consider the dissipative processes due to viscosity (in-
ternal friction) and thermal conduction. The study of
the internal structure of shock front has its importance
for many reasons. At first this problem attracted atten-
tion as purely a theoretical one, the solution of which
describes the physical mechanism of shock compression,
as a truly remarkable phenomenon in gas dynamics and
also in understanding the various processes which take
place in gases at high temperatures, as for example, vi-
brational excitation in molecules, molecular dissociation,
chemical reactions, ionization, and radiation. Obviously,
the theoretical consideration of the structure of shock
front permits one to deduce from the experimental data
a good deal of valuable information about the rates of
these processes.
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In the beginning, the dissipative processes due to
viscosity and thermal conduction were investigated by
Rankine [1], Rayleigh [2] and Taylor [3]. Landau and
Lifshitz [4] presented the complete solution for estimat-
ing the thickness of shock front in an ideal gas. An exact
analytic solution for a shock wave of arbitrary strength
was first obtained by Becker [5] and subsequently inves-
tigated by Morduchow and Libby [6]. This simple and
graphic solution describes all the physical laws governing
the structure of shock front in an ideal gas. Tamm [7]
and Mott-Smith [8] applied the Boltzmann kinetic equa-
tion to the problem of the structure of shock front in
a perfect gas. The structure of shock front in a liquid
was investigated by Hoover [9]. Sakurai [10, 11] refined
the Mott-Smith method on the basis of a hard sphere
model for the molecular interaction, and predicted that
the thickness of shock front approaches a finite limit as
the strength of shock wave tends to infinity. Several
other authors [12–15] developed the Mott-Smith method
and treated the shock front on the basis of Boltzmann’s
equation. Zel’dovich and Raizer [16] studied the en-
tropy production due to the propagation of plane shock
waves in a viscous gaseous medium. The propagation of
plane, cylindrical and spherical shock waves in a viscous
medium was investigated by Yadav and Anand [17]. Re-
cently, Anand and Yadav [18] have studied the structure
of MHD shock waves in a viscous non-ideal gas.

It is assumed, in general, that the gaseous medium be-
haves as an ideal gas following the equation of state PV =
nRT , at low density and low temperature. The particles
of the medium travel along the straight paths and collide
with each other occasionally due to their thermal mo-
tions, thus the mean free path time becomes larger than
the inter-particle interaction time. But at high density
and temperature, mean free path decreases and thus the
inter-particle interaction time increases. Under such con-
dition, the mean energy of inter-particle interaction in-
creases and when this energy becomes comparable with
the mean kinetic energy of thermal motion, the gaseous
medium begins to deviate from the behavior of an ideal
gas. Now, the effect arises due to non-ideality of the gas
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becomes important. Thus, the study of shock waves in a
non-ideal gas is of great interest both from the mathemat-
ical as well as the physical point of view due to its appli-
cations in a variety of fields such as microfluids, nuclear
science, geophysics, plasma physics, aerodynamics, astro-
physics and interstellar medium structure. The contribu-
tion of Anisimov and Spiner [19], Steiner and Gretler [20],
Kjellander et al. [21], Anand [22–24] and many others
is remarkable for the study of shock waves in non-ideal
gaseous media. Wu and Roberts [25] and Roberts and
Wu [26] studied the problem of a spherical implosion by
considering a simplified form of Van der Waals’ equation
of state. Srivastava and Singh [27] studied the flow field
behind the normal shock of variable strength in a vis-
cous and heat conducting medium with the application
of an exact solution representing the progressive waves.
The pressure shocks in the relativistic viscous heat con-
ducting fluids were investigated by Ganagi and Gopalakr-
ishana [28], considering the Eckart model and neglecting
gravitational effects. Ben-Dor [29] investigated the clas-
sical three-shock theory of von Neumann with viscous
effects in shock tubes and waves. The effects of ther-
mal conductivity and viscosity on shock waves in argon
were studied by Henderson et al. [30]. Simeonides [31]
studied viscous effect in the hypersonic flow. Huang
et al. [32] investigated viscous shock waves in a compress-
ible gas. Elizarova et al. [33] calculated the structure of
shock wave for argon and helium using NS approach and
compared the results with experimental data. Thomp-
son et al. [34] estimated the thickness of shock front for a
stationary shock in an ideal gas by equating the internal
entropy production to the entropy increase found from
the Rankine–Hugoniot equation.

In determining the structure and thickness of shock
front, the dissipative processes such as viscosity and ther-
mal conduction play key role within the shock front as the
gradients are very or almost infinitely steep there. It is
also worth mentioning that the viscosity plays a major
role in the mechanism of shock compression rather than
the heat conduction, as the viscosity of the gas causes the
scattering of directed momentum of incident gas and the
conversion of kinetic energy of directed molecular motion
into the kinetic energy of random motion, i.e., the conver-
sion of mechanical energy into heat energy. It is notable
that the heat conduction only indirectly affects the con-
version of mechanical energy due to the redistribution of
the pressure. The thickness of viscous shock front is pro-
portional to the coefficient of viscosity which in turn is
proportional to the molecular mean free path l. In the
limiting case l→ 0, the hydrodynamics of real fluids be-
comes, in the continuous flow regions, the hydrodynam-
ics of an ideal fluid. Thus, in this limit the shock front
is treated as a mathematical surface. In this case, the
gradients of all the flow variables across the front tend to
infinity as 1/l but their jumps remain finite [16]. In na-
ture, the viscous transport coefficients cannot vanish but
must have lower bounds and thus, the small viscous cor-
rections are always needed in the fluid dynamics.

It is notable that the most of the prior studies have
remained focused on the viscous shocks in an ideal gas.
However, it is well known that the viscosity has an im-
portant role in the characterization of the shocks in non-
ideal gas rather than in an ideal gas. To the authors’
best knowledge, so far there is no paper reporting the
structure of viscous shock front in non-ideal gas consid-
ering the Landau and Lifshitz equation of state [35] for
a non-ideal gas. For this purpose, a model is proposed
to provide a simplified, complete treatment for the struc-
ture of plane viscous shock waves in a non-ideal gas using
the Landau and Lifshitz equation of state [35]. It is to be
noted that the equation of state is valid for the case of
propagation of the shock waves for upstream molecular
gases and the equation of state may not be valid for down-
stream gases if destruction of molecules in downstream
due to shock heating is taken into account. The analyt-
ical expressions for the flow variables such as the parti-
cle velocity η, the temperature T/T0, the pressure p/p0
and the change-in-entropy ∆S/Γ within the shock tran-
sition region are obtained in terms of the Mach num-
ber M , coefficient of viscosity µ, adiabatic exponent γ
and parameter of non-ideality bρ0 of the gas. It is worth
mentioning that the validity of the model presented in
this paper is only for small values of the Mach num-
ber M , i.e., M < 2.5 as the effect of thermal conductiv-
ity becomes negligible for above mentioned small values
of M [36]. It is remarkable that the present model ap-
propriately makes obvious the effects due to an increase
in (i) the distance from the origin, O, (ii) the parameter
of non-ideality of the gas, (iii) the coefficient of viscosity,
(iv) the Mach number, and (v) the adiabatic exponent,
on the particle velocity or inverse of density, the tem-
perature, the pressure and the change-in-entropy within
the viscous shock front in non-ideal gas. The results are
discussed and compared with those for the case of an
ideal gas. Thus, the results provided a clear picture of
whether and how the parameter of non-ideality of the gas,
coefficient of viscosity, the Mach number, and the adia-
batic exponent affect the thickness of shock front as well
as the variations in the flow variables within the plane
shock transition region.

The rest of the paper is organized as follows: Sect. 2
describes the general assumptions and notations, equa-
tion of state for non-ideal gas and boundary condition.
In Sect. 3 the general non-dimensional forms of the an-
alytical expressions for the distribution of the flow vari-
ables are presented. A brief discussion of the results is
presented in Sect. 4. The findings are concluded in Sect. 5
with details on which effects were accounted for and
which were not.

2. Basic equations and boundary condition

The unsteady, one-dimensional flow field in a viscous
non-ideal gas is a function of two independent variables:
the time t and the space coordinate r. In order to get
some essential features of the structure of shock front, it
is assumed that the gaseous flow has a finite viscosity and
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zero thermal conductivity, and the equilibrium-flow con-
dition is maintained in the flow field. The conservation
equations governing the flow of a one-dimensional, vis-
cous, non-ideal gas under an equilibrium condition can be
expressed conveniently in Eulerian coordinates as follows:

∂ρ

∂t
+ ρ

∂u

∂r
+ u

∂ρ

∂r
= 0, (1)

∂(ρu)

∂t
+
∂(p+ ρu2 − q)

∂r
= 0, (2)

∂(ρe+ ρu2/2)

∂t
+
∂[ρu(e+ u2/2) + pu− qu]

∂r
= 0, (3)

where ρ(r, t), u(r, t), p(r, t), q(r, t) and e(r, t) are den-
sity, particle velocity, pressure, viscous stress tensor, and
internal energy per unit mass, respectively. r is the posi-
tion coordinate with respect to the origin, O, measured
in the direction normal to the shock front and t is the
time coordinate.

Landau and Lifshitz [35] gave the equation of state for
a non-ideal gas as

p = ΓρT [1 + ρC1(T ) + ρ2C2(T ) + . . .]

where Γ is the gas constant, p, ρ and T are the pres-
sure, density, and temperature of the non-ideal gas, re-
spectively, and C1(T ) and C2(T ) are virial coefficients.
The first term in the expansion corresponds to an ideal
gas. The second term is obtained by taking into account
the interaction between the pairs of molecules, and sub-
sequent terms must involve the interaction between the
groups of three, four, etc., molecules. In the high tem-
perature range, the coefficients C1(T ) and C2(T ) tend
to constant values equal to b and (5/8)b2, respectively.
For gases bρ � 1, b being the internal volume of the
molecules, and therefore, it is sufficient to consider the
above equation of state [19] in the form

p = ΓρT (1 + bρ). (4)
The internal energy e per unit mass of the non-ideal gas
is given as (see Ref. [22])

e = p/ρ(γ − 1)(1 + bρ), (5)
where γ is the adiabatic index. Equation (5) implies that

Cp − Cv = Γ (1 + b2ρ2/(1 + 2bρ)) ∼= Γ ,

neglecting the second and higher powers of bρ. Here Cp

and Cv are the specific heats of the gas at constant pres-
sure and constant volume, respectively. Using the first
law of thermodynamics and Eqs. (4) and (5), we obtain
the isentropic exponent Γ ∗ = γ(1+2bρ)/(1+bρ), neglect-
ing the second and higher powers of bρ. The isentropic
velocity of sound a, in a non-ideal gas is given by

a2 = Γ ∗p/ρ. (6)
The viscous stress tensor (q) is given by

q = (4/3)µ(du/dr), (7)
where µ is the coefficient of viscosity, which is assumed
to be independent of the temperature for simplicity.

In the coordinate system with a stationary shock front,
the shock strength is practically unchanged during the
small time interval ∆t, required to travel a distance of

the order of the shock front thickness, and for this reason,
in the flow Eqs. (1)–(3), the term containing the partial
derivative with respect to time (∂/∂t) can be dropped
and the partial derivative (∂/∂r) can be replaced by the
total derivative (d/dr). Thus, Eqs. (1)–(3) can be writ-
ten as

u
dρ

dr
+ ρ

du

dr
= 0, (8)

d(p+ ρu2 − q)
dr

= 0, (9)

d[ρu(e+ u2/2) + pu− qu]

dr
= 0. (10)

The boundary condition on the solutions of the above
differential Eqs. (8)–(10) requires that the gradients of
the flow variables must vanish ahead of the shock front
(at r = +∞) as well as behind the shock front (at r =
−∞). With these limits, the initial flow variables des-
ignated by the subscript “0” are p0, ρ0, u0, and the final
flow variables with no subscript are p, ρ, u. If the shock
front is moving with velocity U , then in the coordinate
system fixed with the shock front, the initial particle ve-
locity u0 will be

u0 = U. (11)

3. Exact solutions for the flow variables
In order to obtain the exact solutions for the flow vari-

ables, we integrate Eqs. (8)–(10) using the boundary con-
dition given by Eq. (11) in the equilibrium state and then
using Eq. (5) we get

ρ = ρ0U/u, (12)

p = p0 + q + ρ0U
2 − ρu2, (13)

pu/(γ − 1)(1 + bρ) + ρu3/2 + pu− qu =

p0U/(γ − 1)(1 + bρ0) + ρ0U
3/2 + p0U. (14)

Using Eqs. (12) and (13), Eq. (14) can be written as
γp0η/ρ0U

2 + γη(1− η)− bρ0q/ρ0U2 − bρ0(1− η)

+(γ − 1)η2/2 + qUη/ρ0U
3 = γp0/ρ0U

2 + (γ − 1)/2. (15)
Let us define two non-dimensional quantities called par-
ticle velocity η and shock strength M as

η = u/U = ρ0/ρ and M = U/a0, (16)
where a20 = γp0δ/ρ0 is the speed of sound in the unper-
turbed state, and δ = (1 + 2bρ0)/(1 + bρ0). Substituting
Eqs. (7) and (16) into Eq. (15), we get

a1η
2 + b1η + c1 = g1(η − bρ0)dη/dr, (17)

where
a1 = (γ + 1)/2, b1 = −(γ + bρ0 + 1/δM2),

c1 = (bρ0 + 1/δM2 + (γ − 1)/2),

g1 = 4µ/3M(γp0ρ0δ)
1/2.

Eq. (17) is quadratic in η. In equilibrium state, there are
no gradients in the flow variables. Thus, the condition
for the equilibrium state is

dη/dr = 0 with η = ηeq.
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For ηeq, the two solutions of Eq. (17) are

ηeq = [−b1 ±
√

(b21 − 4a1c1)]/2a1.

We denote first equilibrium state by η1 with positive sign
and second equilibrium state by η2 with negative sign as

η1,2 = [−b1 ±
√

(b21 − 4a1c1)]/2a1. (18)
Now integrating Eq. (17) and using Eq. (18), we get

r = (g1/a1)[A log(η − η1) +B log(η − η2)] + C ′, (19)
where C ′ is the constant of integration.

For searching the value of the constant of integra-
tion C ′, we choose the origin, O, at the point of inflec-
tion of velocity profile which is defined by the condition
d2η/dr2 = 0. Using this condition in Eq. (17), we get

d2η/dr2 = a1η
2 − 2a1(bρ0)η − (c1 + b1bρ0) = 0. (20)

The solution of Eq. (20) which gives us the point of in-
flection, is

η′in = bρ0 ± {(bρ0)2 + (c1 + b1bρ0)/a1}1/2. (21)
Using this condition, the constant of integration C ′

in Eq. (19) becomes
C ′ = −(g1/a1)[A log (η′in − η1) +B log(η′in − η2)].(22)

Substituting Eq. (22) into Eq. (19), finally we get the ex-
act solution for the particle velocity with respect to the
distance as

r = (g1/a1)[A log((η − η1)/(η′in − η1))

+B log((η − η2)/(η′in − η2))], (23)
where

A = (η1 − bρ0)/(η1 − η2)

and
B = (η2 − bρ0)/(η2 − η1).

Equation (23) shows that the particle velocity depends
on the distance r within the shock transition region.

Using Eqs. (5), (7) and (14), the exact solution for
the temperature within the shock transition region is ob-
tained as

T/T0 = 1 + γδM2(γ − 1)(1 + bρ0)

×[η2/2− (1 + 1/γδM2)η + (1/2 + 1/γδM2)]. (24)
The above Eq. (24) shows that the temperature depends
on the particle velocity. From Eqs. (23) and (24), we can
calculate the temperature within the shock transition re-
gion with respect to the distance r. Using Eqs. (7), (12)
and (17) into Eq. (13), the exact solution for the pressure
within the shock transition region can be written as

p/p0 = 1 + γδM2[(1− η)

+(a1η
2 + b1η + c1)/(η − bρ0)]. (25)

Thus, Eqs. (23) and (25) simultaneously describe the de-
pendence of the pressure across the shock front on the
distance. Further, we can write an explicit formula for
the change-in-entropy ∆S/Γ across the shock of an arbi-
trary strength in non-ideal gas as

∆S/Γ = (γ − 1)−1 log(T/T0) + log η − η−1bρ0. (26)
Thus, the entropy production across the shock front
is easily obtained by substituting Eqs. (23) and (24)
into Eq. (26).

4. Results and discussion
In the present paper exact solution for the structure

of viscous shock front in non-ideal gas was obtained and
further the effects due to the parameter of non-ideality of
the gas on the flow variables within the shock transition
region were explored. The equation of state for non-ideal
gas was considered as given by Landau and Lifshitz [35].
The non-dimensional analytical expressions for the par-
ticle velocity η, the temperature T/T0, the pressure p/p0
and the change-in-entropy ∆S/Γ within the shock tran-
sition region are given by Eqs. (23), (24), (25) and (26),
respectively. These analytical expressions were derived
by assuming that the disturbances due to the reflections,
wave interactions in the wake, etc., do not overtake the
shock waves. The expressions for the particle velocity,
the temperature, the pressure and the change-in-entropy
are functions of the distance r, the Mach number M ,
the coefficient of viscosity µ, the adiabatic exponent γ
and the parameter of non-ideality bρ0 of the gas. There-
fore, the values of the constant parameters are taken
to be M = 1.1, 1.5, 2.0, µ = 15 × 10−6, 17.2 × 10−6,
20 × 10−6 Pa s, bρ0 = 0, 0.0625, 0.1250, 0.1875, 0.2500,
γ = 1.33, 1.4, 1.66, initial pressure p0 = 0.9 bar and
initial density ρ0 = 1.20 kg/m3 for the purpose of nu-
merical computations. The value bρ0 = 0, corresponds
to the case of a perfect gas. The numerical estimations
of the flow variables within the shock transition region
are carried out using MATLAB code.

It is notable that the thickness of shock front increases
with increase in the coefficient of viscosity, however, it de-
creases with increase in the shock strength. It is remark-
able that the thickness of shock front slightly decreases
with increase in the parameter of non-ideality of the gas
for M = 1.5 and 2.0, whereas it increases for M = 1.1
(see Table I).

The variations of the particle velocity, the tempera-
ture, the pressure and the change-in-entropy distribu-
tion within shock transition region with distance r for
M = 2, γ = 1.33, p0 = 0.9 bar, ρ0 = 1.20 kg/m3,
µ = 15 × 10−6 Pa s and various values of bρ0 are shown
in Fig. 1. It is found that within the shock transition
region around the point of inflection the rate of change
of the flow variables increases for bρ0 = 0 (ideal gas),
however, it decreases as the parameter of non-ideality of
the gas increases. This behavior of the flow variables
with distance r, especially for the case of bρ0 = 0.2500
differs greatly from the case of an ideal gas for which
bρ0 = 0. The spreading of flow variables is slightly large
for an ideal gas than that for non-ideal gas and also it
decreases as the parameter of non-ideality of the gas in-
creases. Thus, the thickness of shock front is maximal
for bρ0 = 0 and minimum for bρ0 = 0.2500. It is also no-
table that the entropy production within the shock front
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TABLE I

The thickness of viscous shock front in non-ideal gas for
γ = 1.4, p0 = 0.9bar and ρ0 = 1.20 kg/m3.

µ

[Pa s]
M bρ0

r1
[m]

r2
[m]

r = r2 − r1
[m]

0 -0.0008317 0.0007005 0.0015322
1.1 0.1250 -0.00102 0.0007635 0.0017835

0.2500 -0.001426 0.001316 0.002742
0 -0.0002317 0.0001143 0.000346

15× 10−6 1.5 0.1250 -0.0002198 0.0001115 0.0003313
0.2500 -0.0002054 0.0001187 0.0003241

0 -0.0001185 0.00004615 0.00016465
2.0 0.1250 -0.0001162 0.00004431 0.00016051

0.2500 -0.0001102 0.000045 0.0001552
0 -0.0009537 0.0008032 0.0017569

1.1 0.1250 -0.00117 0.0008755 0.0020455
0.2500 -0.001635 0.001509 0.003144

0 -0.0002657 0.0001311 0.0003968
17.2× 10−6 1.5 0.1250 -0.000252 0.0001278 0.0003798

0.2500 -0.0002355 0.0001361 0.0003716
0 -0.0001359 0.00005291 0.00018881

2.0 0.1250 -0.0001333 0.0000508 0.0001841
0.2500 -0.0001264 0.00005161 0.00017801

0 -0.001109 0.000934 0.002043
1.1 0.1250 -0.001361 0.001018 0.002379

0.2500 -0.001901 0.001755 0.003656
0 -0.0003089 0.0001524 0.0004613

20× 10−6 1.5 0.1250 -0.0002931 0.0001486 0.0004417
0.2500 -0.0002738 0.0001583 0.0004321

0 -0.000158 0.00006153 0.00021953
2.0 0.1250 -0.000155 0.00005908 0.00021408

0.2500 -0.000147 0.00006001 0.00020701

is slightly large for bρ0 = 0 than for bρ0 = 0.2500. It is
worth mentioning that the plots for the particle veloc-
ity, the temperature and the pressure are distinguishable
towards the upstream side i.e., ahead of the point of in-
flection, however, these plots are not so much distinguish-
able towards the downstream side. On the other hand,
the plots for change-in-entropy are more distinguishable
towards both the downstream and upstream sides.

The variations in the flow variables with respect to
the distance for M = 2, γ = 1.33, p0 = 0.9 bar,
ρ0 = 1.20 kg/m3 and various values of µ and bρ0 are
shown in Fig. 2. It is observed that the spreading of the
flow variables increases with increasing value of the co-
efficient of viscosity for both cases of ideal and non-ideal
gases. It is notable that the spreading of the flow vari-
ables is slightly large in case of an ideal gas. Thus, the
thickness of shock front is slightly small for higher val-
ues of bρ0. It is found that within the shock transition
region, the rate of change of the flow variables around
the point of inflection decreases with increasing value of
the coefficient of viscosity of the gas. It is also obvious
from Fig. 2 that the entropy production within a shock
front is slightly large for bρ0 = 0 than for bρ0 = 0.2500.

Fig. 1. The variations of particle velocity, tempera-
ture, pressure and change-in-entropy distribution within
shock transition region with distance r for M = 2, γ =
1.33, p0 = 0.9 bar, ρ0 = 1.20 kg/m3, µ = 15×10−6 Pa s
and various values of bρ0.

Fig. 2. The variations of particle velocity, tempera-
ture, pressure and change-in-entropy distribution within
shock transition region with distance r for M = 2,
γ = 1.33, p0 = 0.9 bar, ρ0 = 1.20 kg/m3 and various
values of µ and bρ0.

Thus, the thickness of shock front in an ideal gas is
slightly large.

The variations of the flow variables within shock tran-
sition region with respect to the distance for γ = 1.33,
p0 = 0.9 bar, ρ0 = 1.20 kg/m3, µ = 15 × 10−6 Pa s
and various values of M and bρ0 are shown in Fig. 3.
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Fig. 3. The variations of particle velocity, tempera-
ture, pressure and change-in-entropy distribution within
shock transition region with distance r for γ = 1.33,
p0 = 0.9 bar, ρ0 = 1.20 kg/m3, µ = 15× 10−6 Pa s and
various values of M and bρ0.

It is notable that the spreading of flow variables is small
for M = 2 and it increases with decreasing value of M .
Thus, the thickness of shock front decreases with increas-
ing value ofM for both cases of ideal and non-ideal gases.
It is notable that the variations of the particle veloc-
ity, temperature and pressure within the shock front re-
gion are slightly small in non-ideal gas. Thus, the thick-
ness of shock front in non-ideal gas is slightly small for
every value of M . The entropy production within the
shock front region is slightly large for bρ0 = 0 than for
bρ0 = 0.2500. It is notable that the plots for all flow
variables are distinguishable towards the upstream side
whereas these plots are not so much distinguishable to-
wards the downstream side.

The variations of the flow variables with respect to the
distance for M = 2, p0 = 0.9 bar, ρ0 = 1.20 kg/m3,
µ = 15 × 10−6 Pa s and various values of γ and bρ0 are
shown in Fig. 4. It is observed that the spreading of flow
variables is small for γ = 1.33 and it increases with in-
creasing value of γ. Thus, the thickness of shock front
increases with increasing value of γ for both cases of ideal
and non-ideal gases. The variations of the particle veloc-
ity, temperature and pressure within the shock transition
region are slightly small in the non-ideal gas. Thus, the
thickness of shock front is slightly small in non-ideal gas
for every value of γ. It is noteworthy that the entropy
production within the shock front region is slightly large

Fig. 4. The variations of particle velocity, tempera-
ture, pressure and change-in-entropy distribution within
shock transition region with distance r for M = 2,
p0 = 0.9 bar, ρ0 = 1.20 kg/m3, µ = 15 × 10−6 Pa s
and various values of γ and bρ0.

for bρ0 = 0 than for bρ0 = 0.2500. It is also notable that
the plots for all flow variables are distinguishable towards
the upstream side but are not so much distinguishable to-
wards the downstream side.

5. Conclusions

The investigations made in the present paper are in-
tended to contribute to the understanding of the struc-
ture of viscous shock front in real gases [19, 22, 35], by
giving, for the first time, the full exact solutions for the
flow field within the shock transition region. The analysis
presented in the paper shows the fundamental role played
by viscosity and non-ideality of the gas in determining the
structure of shock front. The following conclusions may
be drawn from the findings of the current analysis:

1. The thickness of shock front decreases with increas-
ing value of the parameter of non-ideality of the gas
and the Mach number.

2. The thickness of shock front increases with increas-
ing value of the coefficient of viscosity and adiabatic
index of the gas.

3. The entropy production within viscous shock front
region decreases with increasing value of the pa-
rameter of non-ideality of the gas.
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It is worth mentioning that the effect of thermal con-
ductivity can be neglected for small values of Mach num-
ber M thus, the present model remains valid only for
M < 2.5.
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