
Acta Polytechnica Hungarica Vol. 18, No. 10, 2021

‒ 173 ‒

Software Defect Prediction using Deep Learning

Meetesh Nevendra* and Pradeep Singh

Department of Computer Science and Engineering

National Institute of Technology, Raipur, India

e-mail: mnevendra.phd2018.cs@nitrr.ac.in and psingh.cs@nitrr.ac.in

Abstract: An increasing number of defects in software, damages the quality and reliability of

that software. The detection of defective instances is becoming increasingly important, and

current detection techniques require a great deal of improvement. However, Machine

Learning (ML) techniques are effectively used, to detect defects in software. The primary

purpose of ML techniques in Software Defect Prediction (SDP) is to predict defects,

according to historical data. Establishing a critical SDP model on high-dimensional and

limited data is still a challenging task. Thus, in this paper, we proposed an approach to detect

defective modules in software using enhanced Convolutional Neural Networks (CNNs).

The paper aims to identify the defective instance using the enhanced deep learning method.

Our experiments are based on Within Project Defect Prediction (WPDP), where K-fold

cross-validation is performed. The proposed approach has been evaluated on nineteen open-

source software defect datasets, with respect to different evaluation metrics. Empirical

results show that our proposed approach is significantly better than Li's CNN and standard

ML model. In addition, we performed the Scott-Knot ESD test, which shows the effectiveness

of our proposed approach.

Keywords: Software defect; CNN; Deep learning

1 Introduction

In the modern area, software quality is increasing rapidly, which directly affects the

cost and reliability of the software product. However, the presence of defects in the

software linearly decreases the quality and increases the software product's cost.

SDP [1-3] is a technique that builds a classifier and predicts the code areas that

potentially contain defects. The classifier's outcomes (i.e., defective programming

regions) can locate indications for code reviewers to allocate their efforts. SDP is

an essential part of software quality analysis [4] and is analyzed through software

reliability engineering. In software engineering, early detection of defective parts

of a software system can help developers and engineers in finding the correct way

to use the limited resources in the testing and maintenance phases of software

development.

mailto:mnevendra.phd2018.cs@nitrr.ac.in
mailto:psingh.cs@nitrr.ac.in

M. Nevendra et al. Software Defect Prediction using Deep Learning

‒ 174 ‒

Several research studies have been done for SDP to predict defective instances from

historical data [1] [5]. SDP is more feasible because it can predict the defective

instances and ensure developers from where defects arise. In recent work, Dam et

al. proposed experimental research on SDP using a deep tree-based prediction

model [6].

Nowadays, deep learning (DL) has played an essential role in the ML literature [7],

and it has been used by different research areas and proven to be very useful,

especially in speech recognition [8] and image processing [9]. Still, the use of DL

for SDP is not thoroughly investigated. This study develops an enhanced deep

learning model to investigate how the deep learning model will work with defect

prediction datasets. We proposed an approach that utilizes enhanced CNN to predict

the defective instances from a historical dataset. The proposed approach comprises

two stages: model construction and prediction. In the model-construction phase, we

first select the appropriate features using the feature selection (FS) technique, then

these features are used to build the model using an enhanced CNN approach. Once

the model is built, we predict the software defectiveness in the prediction phase.

To evaluate our approach, we used accuracy, precision, recall, and f1-score, one of

the most widely used metrics. We conducted experiments on 19 open source

software defect datasets. The experimental results suggest that the suggested

approach performs better than Li's CNN and standard ML models. We also

performed the Scott-Knot ESD (SK-ESD) test to indicate that our proposed

approach has utility.

The remaining of our paper is summarized as follows. In Section 2, we discuss

related works. Section 3 provides an overview and description of the CNN

architecture. Section 4 the datasets and performance measures are given. Section 5

shows the overall outline of our approach. Section 6 describes our experiments and

results. Finally, Section 7 offers Conclusions and future work.

2 Related Work

In order to more understand the SDP, we look back at the previous work done by

the researchers in past years. Before going into SDP for details, we do an in-depth

review of valuable methods that are indifferent to software metrics bases and well-

known in this area of SDP. Chidamber et al. [10] explain that software metrics are

suited for SDP. Basili et al. [11] examined and validated the object-oriented design

metrics (OODM) and determines that either this OODM is valid or not for SDP.

The reliability of the software varies according to different coding styles and various

other parameters. Reliability is also one of the critical issues in SDP. To solve the

problem, additional knowledge needs to be gathered in the form of historical source

code. However, this problem is addressed by Gyimothy et al. [12] and by a new

Acta Polytechnica Hungarica Vol. 18, No. 10, 2021

‒ 175 ‒

method based on object-oriented metrics analysis and determined that these metrics

are highly suitable for improving the model's prediction performance. Singh and

Verma [13] also performed the defect prediction, in the design phase. They

explained that design metrics are beneficial for the software development life cycle

(SDLC), and the prediction of defects should happen at the initial phase of SDLC

for early warning and cost-effective software development.

Several prior approaches have been investigated for classifying the SDP. Byoung

et al. [14] established a novel polynomial function-based neural network (pf-NN)

model for SDP. The approach aggregates fuzzy C-means and genetic clustering

techniques, facilitating the acquisition of nonlinear parameters for a procedure.

However, in terms of classification, clustering techniques are not suitable for

achieving enhanced prediction performance. Different ML algorithms have been

used for SDP to overcome this problem, such as Naïve Bayes (NB) classifier,

support vector machine (SVM), decision tree, neural network, and DL techniques.

Elish et al. [15] established the SDP scheme using SVM. They evaluated the

effectiveness of SVM against eight statistical and ML models in the context of four

open-source NASA datasets. The outcomes demonstrate that SVM is more effective

in finding defects compare to other models. Researchers also found that NB is

suitable for classifying SDP. Shivaji et al. [16] employed the NB classification

techniques for SDP using FS methods. They found that NB using FS improves the

significant performance of defective f-measure by 21%. However, they also show

that NB achieves a 12% improvement over SVM. Correspondingly, Dejaeger et al.

[17] performs the SDP using 15 different Bayesian networks and other popular ML

methods and found that augmented NB classifiers perform better than other

classifiers in terms of the ROC curve.

Santosh et al. [18] also performed the SDP using decision tree classification and

developed a recommendation system for SDP. They found that the tree

classification technique is more suitable for finding the defects. Singh and Verma

[19] utilized 16 open-source datasets to find the defects using a multi classifier

approach, a combination of SVM, NB, and Random forest (RF). They found that

this technique is more effective for performing the SDP. Singh et al. [20] utilized

the fuzzy rule-based approach for finding the defect in software metrics. They find

that a fuzzy rule-based classification technique can produce competitive or

improved performance than C4.5, RF, and NB classifiers. They also determine that

the proposed technique is a more comprehensive option than the other existing

techniques for understanding several aspects that determine software defects.

Recently, Yang et al. [21] utilized a DL-based technique for SDP. They utilized a

deep belief network to predict defects on six large open-source projects.

The experimental results show that the proposed approach can achieve significant

results than other approaches. Manjula and Florence [22] also developed a deep

based hybrid approach for SDP using software metrics. They combine the genetic

algorithm and deep neural network for classification. The outcomes showed that the

proposed approach performs significantly better than other techniques. Li et al. [23]

M. Nevendra et al. Software Defect Prediction using Deep Learning

‒ 176 ‒

and Phan et al. [24] utilized CNN to predict the software defect. Also, Zhao et al.

[25] predict the software defect via cost-sensitive siamese parallel fully connected

neural networks. The outcomes of these studies show that the DL technique plays

an essential role in ML for SDP and can be utilized in several classification areas.

However, these techniques still go through many problems such as accuracy,

computational time, and complexity with respect to defect prediction. Nevertheless,

these problems can be further improved. Here we present an enhanced CNN

approach that helps to reduce the overfitting problem and provide a significantly

better classification rate to overcome these issues. The entire process of our

proposed model is shown in Section 5.

3 Convolutional Neural Network Architecture

Our proposed approach enhances the CNN model to predict software defect

instances in software defect datasets. Our CNN model has four convolution layers,

two pooling layers, a flattening layer, and two dense layers. Li's CNN model and

our enhanced CNN model are compared in Table 1.

Table 1

Li's CNN model compared to our enhanced CNN model

 Li’s CNN Enhanced CNN

Convolutional Layers One Four

Embedding Layer ✓ ✕

Dense layer One Two

Pooling Layers One Two

Dropout ✕ ✓

Activation function ReLU and sigmoid ReLU and sigmoid

Training and optimizer Mini-batch SGD and Adam Adam and binary cross-entropy

Parameter initialization ✕ ✓

Our enhanced CNN model and Li's model have several changes, like convolutional

layers, pooling layers, dense layers and dropout layers, activation function,

optimizer and parameter initializer. We utilized one dropout between convolutional

layers and one dropout between dense layers in our enhanced CNN architecture.

These changes in the model will help to increase the performance and reduce the

problem of overfitting.

3.1 Convolution Layer

CNN relies heavily on convolutional layers as a building block. In a convolutional

layer, the goal is to extract features from the input data. Each layer has a set of

Acta Polytechnica Hungarica Vol. 18, No. 10, 2021

‒ 177 ‒

learnable filters as its parameter 𝑤 = 𝑤1, 𝑤2, … , 𝑤𝑛 and biases = 𝑏 = 𝑏1, 𝑏2, … , 𝑏𝑛.

Layers apply convolution operations to generate a feature map 𝑋𝑛 and pass the

result on to subsequent layers. A nonlinear element-wise transform 𝜎(∙) is applied

to these features, and the same process is repeated for each convolutional layer 𝑘.

𝑋𝑛
𝑘 = 𝜎(𝑤𝑛

𝑘−1 ∗ 𝑋𝑘−1 + 𝑏𝑛
𝑘−1) (1)

3.2 Pooling Layer

Using a pooling layer, which reduces the resolution of the feature maps to achieve

shift-invariance, is usually placed between two convolutional layers. Each feature

map in a pooling layer is connected to its corresponding feature map in the

convolutional layer preceding it in the pipeline. For each feature map 𝑎:,:,𝑘
𝑙 we have

𝑝𝑜𝑜𝑙(∙) as the pooling function.

𝑦𝑖,𝑗,𝑘
𝑙 = 𝑝𝑜𝑜𝑙(𝑎𝑚,𝑛,𝑘

𝑙), ∀(𝑚, 𝑛) ∈ ℛ𝑖,𝑗 (2)

where ℛ𝑖,𝑗 is a local neighbourhood around location (𝑖, 𝑗). Average pooling and

maximum pooling are the two most common pooling operations [26].

3.3 Flatten Layer

It converts the data into a 1-dimensional array so that it can be input into the next

layer. We flatten the output of the convolutional layers to create a single long feature

vector. A fully connected layer links it to the final classification model.

3.4 Dropout

Dropout was first introduced by Hinton et al. [27], and it has been shown to be very

effective in reducing overfitting. As part of our enhanced CNN architecture, we

apply dropout after the max-pooling and the fully connected layers, respectively.

Dropout has the following output:

𝑦 = 𝑟 ∗ 𝑎(𝑊𝑇𝑥) (3)

where 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛]𝑇 is the input to a layer that is fully connected 𝑊𝑇 ∈ ℛ𝑛∗𝑑

is a weight matrix and 𝑟 is a binary vector of size 𝑑.

3.5 Dense Layer

The CNN has dense layers after convolution and pooling. It's important to note that

each node in the dense layer is fully connected to every other node in previous

layers. Dense layers integrate local information with category differentiation in the

convolutional or pooling layer, which is the function of the layer. This equation can

be represented as:

M. Nevendra et al. Software Defect Prediction using Deep Learning

‒ 178 ‒

𝑑𝑙1 = 𝑓(∑ 𝔴1,𝑝 ∗𝑁
𝑝=1 𝑜𝑝 + 𝑏) (4)

A neuron's activation function is denoted by the 𝑓, where 𝔴 is a weight vector, 𝑜 is

the input vector, and 𝑏 is the bias value.

For this paper, the dense layer's activation function was referred to as Rectified

Linear Unit (ReLU). The ReLU is treated as a standard activation function in CNN,

however. They have shown that they are faster to train than standard sigmoid units

in the hidden layer and can sometimes help with discriminative performance [28].

In this case, the derivative of the ReLU activation function is given as:

𝑓′(𝑥) =
𝛿𝑓(𝑥)

𝛿𝑥
= {

0 𝑖𝑓 𝑥 < 0
1 𝑖𝑓 𝑥 > 0

 (5)

Our CNN architecture utilized the sigmoid activation function (SAF) at the last

layer (output layer). The SAF is used to find a probability between 0 to 1. Mainly

SAF is utilized where the probability needs to be found as an output. However, the

probability has occurred only between 0 to 1; thus, the SAF is the correct choice.

Mathematically the sigmoid activation function is defined as:

𝑆(𝑥) =
1

1+𝑒−𝑥 (6)

4 Datasets and Performance Measure

4.1 Datasets

To estimate the prediction capabilities of our CNN model, we experimented on 19

open-source software defect datasets. These defect datasets are collected from the

tera-PROMISE data repository [29]. The instance of every dataset corresponds to

two parts: metrics and labels. Table 2 show the statistics of utilized datasets.

Columns one and four represent the dataset ID, columns two and six represent the

dataset name, columns three and six represent the line of code, and columns four

and eight represent the number of instances and defects. However, Table 3 shown

the features present in the dataset. Columns 1 and 3 represent the feature ID, and

columns 2 and 4 represent the features name of all the datasets.

Table 2

Statistics of Datasets

D.ID Dataset LOC Instance /

Defects

D.ID Dataset LOC Instance /

Defects

D01 log4j-1.0 21,549 135 / 34 D11 synapse-1.1 42,302 222 / 60

D02 log4j-1.2 38,191 205 / 189 D12 synapse-1.2 53,500 256 / 86

D03 lucene-2.0 50,596 195 / 91 D13 velocity-1.4 51,713 196 / 147

D04 lucene-2.2 63,571 247 / 144 D14 velocity-1.6 57,012 229 / 78

Acta Polytechnica Hungarica Vol. 18, No. 10, 2021

‒ 179 ‒

D05 lucene-2.4 102,859 340 / 203 D15 xalan-2.4 225,088 723 / 110

D06 poi-1.5 55,428 237 / 141 D16 xalan-2.5 304,860 803 / 387

D07 poi-2.0 93,171 314 / 37 D17 xalan-2.6 411,737 885 / 411

D08 poi-2.5 119,731 385 / 248 D18 xerces-1.2 159,254 440 / 71

D09 poi-3.0 129,327 442 / 281 D19 xerces-1.3 167,095 453 / 69

D10 synapse-1.0 159,254 440 / 71 - Total 2,306,238 7,147 / 2,858

Table 3

Features in the datasets

F.ID Features

name

F.ID Features

name

1 wmc 11 moa

2 dit 12 mfa

3 noc 13 cam

4 cbo 14 ic

5 rfc 15 cbm

6 lcom 16 amc

7 lcom3 17 ca

8 npm 18 ce

9 loc 19 max_cc

10 dam 20 avg_cc

4.2 Performance Measure

In order to compare the results, we evaluate measures such as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (7)

The accuracy is the percentage of correct classifications in the total number of

classifications. Where T and F stand for true and false, P and N stand for positive

and negative samples, respectively.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (8)

The precision is calculated by dividing the number of correct classifications by the

number of incorrect.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (9)

The recall measures the number of correct classifications minus the number of

missed entries.

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (10)

On the other hand, an F1-score is a derived effectiveness measurement that

measures the harmonic mean of precision and recall.

M. Nevendra et al. Software Defect Prediction using Deep Learning

‒ 180 ‒

5 Proposed Approach

The overall workflow of our proposed approach is shown in Figure 1 below.

The proposed enhanced CNN model was applied for predicting the defects in

software projects. There are two phases to this approach: model construction and

prediction. For model construction, the dataset is divided into k-folds, where k-1

folds are used to train the CNN model, and one fold is used to test the model.

Figure 1

The overall workflow of our proposed approach

In order to train the CNN model, the FS technique is applied to the selected k-1

parts of data because the CNN model's input size should be expressed in metric

units of 𝑛∗𝑛. The 𝑛∗𝑛 metrics cannot accommodate 𝑚 number of features in our

dataset. So, either increase the number of features in the dataset or remove those

that aren't needed. This is why we removed unnecessary features to convert our

dataset into 𝑛∗𝑛 format in order to avoid performance degradation. We used Chi-

square (Chi2) filter-based FS to select 𝑁 number of features in our experiment.

It has been demonstrated by Nam et al. [30] that Chi-square is the most effective FS

of all approaches. When features and classes are linked together, Chi2 performs

well. When selecting relevant features, it helps to identify the frequency between

class and feature. In our execution, we selected only those features that had the

highest Chi2 scores. Calculation of the Chi2 score is denoted by:

𝐶ℎ𝑖 − 𝑠𝑞𝑢𝑎𝑟𝑒 (𝜒2) =
(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦−𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
 (11)

The number of examined classes is defined as the observed frequency. However, if

there were no association between feature and target, the predicted class number

would represent the expected frequency of that feature. Chi2 FS ranked the features

based on their relationship to the class as long as they are ranked in order. To create

n*n features metrics, we removed the lower-ranked feature metric from the features

metrics. 𝑛 ∗ 𝑛 2D metrics are created after 𝑁 features are chosen from the source

data.

Acta Polytechnica Hungarica Vol. 18, No. 10, 2021

‒ 181 ‒

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟏 Proposed Approach

𝑰𝒏𝒑𝒖𝒕: 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 𝒟 = {𝑥𝑡,𝑦𝑡}𝑡=1
𝑛

 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝐶𝑁𝑁 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚

𝑶𝒖𝒕𝒑𝒖𝒕: 𝑃𝑟𝑒𝑑𝑖𝑐𝑡 𝑡ℎ𝑒 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑠𝑐𝑜𝑟𝑒

𝑰𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏: 𝑆𝑒𝑙𝑒𝑐𝑡 𝑘 = 10 𝑓𝑜𝑟 𝑘 − 𝑓𝑜𝑙𝑑 𝑐𝑟𝑜𝑠𝑠 − 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛

 𝑁 = 10 𝑓𝑜𝑟 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑢𝑛𝑠

𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑁

 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑓𝑜𝑙𝑑 𝑘 𝑑𝑜

 𝑇𝑟𝑎𝑖𝑛, 𝑇𝑒𝑠𝑡 = 𝒟(𝑡𝑒𝑠𝑡 𝑠𝑖𝑧𝑒 = 0.9, 𝑡𝑟𝑎𝑖𝑛 𝑠𝑖𝑧𝑒 = 0.1)

 𝑆𝑒𝑙𝑒𝑐𝑡 𝑚 𝑡𝑜𝑝 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑓𝑟𝑜𝑚 𝑇𝑟𝑎𝑖𝑛 𝑑𝑎𝑡𝑎

 𝑡𝑟𝑎𝑖𝑛𝑛𝑒𝑤 = 𝜒2 = ∑ ∑
(𝐷𝑟𝑠−𝐸𝑟𝑠)2

𝐸𝑟𝑠

𝑞
𝑠=1

𝑝
𝑟=1

 𝑀𝑜𝑑𝑒𝑙 = 𝐶𝑁𝑁(𝑡𝑟𝑎𝑖𝑛𝑛𝑒𝑤)

 𝑡𝑒𝑠𝑡𝑛𝑒𝑤 = 𝑆𝑒𝑙𝑒𝑐𝑡 𝑠𝑎𝑚𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑓𝑟𝑜𝑚 𝑇𝑒𝑠𝑡 𝑎𝑠 𝑡𝑟𝑎𝑖𝑛𝑛𝑒𝑤

 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑡𝑒𝑠𝑡 = 𝑀𝑜𝑑𝑒𝑙. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑡𝑒𝑠𝑡𝑛𝑒𝑤)

 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑠𝑐𝑜𝑟𝑒 [𝑘] = 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑡𝑒𝑠𝑡)

 𝑒𝑛𝑑 𝑓𝑜𝑟

 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑠𝑐𝑜𝑟𝑒 [𝑖] = 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒[𝑘]. 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ,

 𝑒𝑛𝑑 𝑓𝑜𝑟

 𝐹𝑖𝑛𝑎𝑙𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒[𝑖]. 𝑎𝑣𝑒𝑟𝑎𝑔𝑒

Further, the two-dimensional metric is transformed into 3D feature maps. Then the

3D metrics are then used to train a CNN model based on these metrics. In the

prediction phase, the generated model is used to predict the defects (defective or

non-defective) from the remaining one part of the data; before the prediction phase,

the remaining one part of the data is selected as the same as features like the k-1

part of the data. The experiments are conducted ten times, and the average of all

runs is selected as an outcome. The final outcomes are compared with Li's CNN

and benchmarking ML approaches, SVM, AdaBoost, and KNN. Wu et al. [31] also

added these three algorithms as the top 10 algorithms in data mining. Algorithm 1

shows the implementation of our proposed approach.

The SVM [32] is one of the effective and accurate supervised ML approaches.

However, SVM has to find the best classification function to distinguish between

members of two classes (0 and 1) in the training dataset.

The AdaBoost algorithm [33] was recommended by Freund and Schapire in 1977

and found one of the essential ensembles approaches since it has a substantial

theoretical establishment, extremely accurate prediction, incredible simplicity, and

extensive applications. The AdaBoost primary function is to generate a classifier by

using the base learning algorithms repeatedly. The AdaBoost algorithm is used for

both classification and regression problems.

K-nearest neighbor (KNN) [33] classifier has used a cluster of k substances in a

training dataset neighboring the test entity. It bases the allocation of a label on the

majority of a specific class in this neighborhood. The algorithm computes the

M. Nevendra et al. Software Defect Prediction using Deep Learning

‒ 182 ‒

distance of the z object from the test object with training objects to establish its

nearest neighbor. Once the nearest-neighbor list is achieved, the test object is

classified based on its nearest neighbors’ majority class and classifies their

respective classes.

6 Results

For the experiments, we utilized a 10-fold cross-validation technique [34] to

evaluate the execution of the proposed model in within-version scenarios.

The proposed approach divides the datasets into ten equal parts, each with equal

features and classes. We need to create the 𝑛 ∗ 𝑛 metrics from the given feature

metrics, and it can't be possible to convert the 𝑛 ∗ 𝑛 metrics from the given 20

feature metrics. So to transform our data into 𝑛 ∗ 𝑛 metrics, we choose the top 16

features out of 20 features. In order to transform metrics into 4 ∗ 4 2D feature

metrics, we select the 16 most important features from each metric. As shown in

Table 4, the selected feature ID can be found. A total of 16 features are selected for

each dataset that is specified. According to their class, the features are chosen. First,

the feature with the highest relative importance is chosen, followed by the second,

and so on. The features that have been selected are displayed in decreasing order.

It's crucial to select the maximum relevance features first and then minor relevance

features at the end.

Table 4

Selected features ID for proposed approach

D01 D02 D03 D04 D05 D06 D07 D08 D09 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19

11 6 11 6 11 6 11 11 11 11 11 11 11 11 11 6 11 11 11

6 18 6 11 6 11 6 6 6 5 6 5 18 6 6 11 6 6 6

5 11 5 5 5 5 18 5 5 19 5 6 6 5 5 5 18 5 5

4 7 18 1 4 1 5 1 1 18 8 4 5 18 18 1 5 18 18

7 4 1 9 1 9 1 9 9 6 19 18 19 8 1 9 1 1 8

1 5 19 4 9 18 8 17 18 8 1 8 1 1 9 19 9 13 1

9 9 8 8 7 8 4 8 4 1 18 19 17 9 19 18 4 8 4

19 1 4 7 8 3 19 7 8 7 4 1 16 4 4 17 19 17 13

8 17 9 17 18 4 9 19 19 4 9 7 7 19 7 4 7 4 19

18 3 3 18 17 17 13 16 17 9 13 9 3 3 8 7 8 9 17

20 8 13 13 3 13 17 3 13 3 7 17 4 13 17 3 13 3 7

13 12 7 10 19 19 7 13 7 20 12 13 2 17 13 13 3 7 16

17 16 17 3 13 16 3 2 16 17 14 16 8 15 20 8 17 19 9

16 19 12 19 16 2 20 14 20 16 20 12 20 10 3 20 10 2 12

12 14 16 12 12 14 16 10 12 13 2 20 14 16 16 16 20 14 3

3 20 8 15 10 7 14 4 10 15 10 10 12 2 15 2 14 20 10

After converting 4*4 2D metrics to 3D metrics, feed this 3D metrics data into our

enhanced CNN model. Before the prediction phase, the test data feature metrics are

converted into 3D metrics so that they are the same as the source data.

Every fold of the data is used ten times in the execution of the program. In every

iteration, the model's training is performed with nine parts of the data; however, the

Acta Polytechnica Hungarica Vol. 18, No. 10, 2021

‒ 183 ‒

remaining part is used for testing. For the statistical reliability of the result, we run

our experiment 10 times and record the average performance. However, we used

accuracy, precision, recall and f1-score as a performance measure.

Table 5 shows the obtained result of our proposed approach vs different ML

techniques, the best outcome of the average result in bold. We found that the

proposed approach performs significantly better than different “state-of-the-art”

ML approaches. The proposed model shows improvement with respect to all the

performance evaluations. Proposed model overcome the KNN, SVM and AdaBoost

with respect to accuracy by 3.68%, 5.98%, 2.48%, with respect to precision by

3.51%, 5.79%, 2.07%, with respect to recall by 2.95%, 4.8%, 3.46% and with

respect to f1-score by 3.23%, 5.35% and 2.45% respectively. However, to identify

the significance of our proposed model, we applied the SK-ESD test, which is

implemented by Tantithamthavorn et al. [35]. It is also available on CRAN1.

T
ab

le
 5

C
o

m
p

ar
is

o
n

 o
f

P
ro

p
o

se
d

 A
p
p

ro
ac

h

A

v
er

ag
e

0
.7

4
7

0
.7

5
5

0
.7

6
7

0
.7

6
1

0
.7

3

0
.7

3
8

0
.7

5
3

0
.7

4
5

0
.7

5
6

0
.7

6
6

0
.7

6
9

0
.7

6
7

0
.7

7
5

0
.7

8
2

0
.7

9

0
.7

8
6

D

1
9

0
.8

2
3

0
.8

3
6

0
.8

7
5

0
.8

5
5

0
.8

5
2

0
.8

4
6

0
.8

8
3

0
.8

6
4

0
.8

3
4

0
.8

2
2

0
.8

5
2

0
.8

3
7

0
.8

4
2

0
.8

3
4

0
.8

5
6

0
.8

4
5

D
1

8

0
.8

0
6

0
.8

4
7

0
.8

5
3

0
.8

5

0
.8

3
4

0
.8

2
4

0
.8

5
4

0
.8

3
9

0
.7

7
9

0
.7

5
3

0
.7

5
5

0
.7

5
4

0
.8

4
7

0
.8

7
6

0
.8

8
8

0
.8

8
2

D
1
7

0
.7

1
4

0
.6

9
7

0
.7

0
.6

9
8

0
.6

1
8

0
.6

5
8

0
.6

9
5

0
.6

7
6

0
.7

3
3

0
.6

7
4

0
.7

3
4

0
.7

0
3

0
.8

3
9

0
.8

6
2

0
.8

5
6

0
.8

5
9

D
1

6

0
.6

7
1

0
.6

4
3

0
.6

6
3

0
.6

5
3

0
.5

9
6

0
.5

8
9

0
.6

1
1

0
.6

0
.6

5
1

0
.6

2
8

0
.6

4
3

0
.6

3
5

0
.5

8
6

0
.5

6
1

0
.5

8
4

0
.5

7
2

D
1
5

0
.8

4
2

0
.8

4
2

0
.8

7
5

0
.8

5
8

0
.8

4
6

0
.8

5
6

0
.8

4

0
.8

4
8

0
.8

1
7

0
.7

9
9

0
.8

2
9

0
.8

1
4

0
.8

4
8

0
.8

2
1

0
.8

2
9

0
.8

2
5

D
1
4

0
.6

5
4

0
.6

7
4

0
.6

8
7

0
.6

8

0
.6

7
6

0
.6

8
5

0
.6

7
9

0
.6

8
2

0
.7

0
3

0
.7

7
5

0
.7

3
8

0
.7

5
6

0
.8

4
7

0
.8

3
4

0
.8

5
9

0
.8

4
6

D
1

3

0
.7

2
9

0
.7

5
1

0
.7

9
2

0
.7

7
1

0
.7

5
9

0
.7

5
3

0
.7

5
3

0
.7

5
3

0
.8

4
1

0
.8

5
8

0
.8

7

0
.8

6
4

0
.6

9
4

0
.7

0
4

0
.7

1

0
.7

0
7

D
1
2

0
.7

3

0
.7

3
5

0
.7

3
4

0
.7

3
4

0
.6

7
2

0
.6

4
1

0
.6

7
4

0
.6

5
7

0
.7

1
8

0
.6

0
2

0
.6

0
9

0
.6

0
5

0
.7

4
9

0
.7

6
5

0
.7

5
4

0
.7

5
9

D
1
1

0
.7

1
6

0
.7

2
3

0
.7

1
9

0
.7

2
1

0
.7

3
4

0
.7

3
2

0
.7

2
4

0
.7

2
8

0
.7

6
5

0
.7

3
9

0
.7

1
1

0
.7

2
5

0
.7

2
9

0
.7

3
4

0
.7

3
2

0
.7

3
3

D
1
0

0
.8

7
2

0
.8

1
5

0
.8

1
5

0
.8

1
5

0
.8

9
7

0
.8

9
2

0
.8

7
1

0
.8

8
1

0
.8

5
3

0
.8

3
1

0
.8

3
3

0
.8

3
2

0
.8

9
7

0
.8

8
3

0
.8

8
6

0
.8

8
4

D
0
9

0
.7

5
1

0
.7

6
2

0
.7

8

0
.7

7
1

0
.7

4
2

0
.7

5
9

0
.7

9
1

0
.7

7
5

0
.7

7
8

0
.8

3
2

0
.8

3
3

0
.8

3
2

0
.8

9
8

0
.9

0
2

0
.9

1

0
.9

0
6

D
0
8

0
.7

6
1

0
.7

5

0
.7

8
2

0
.7

6
6

0
.7

0
6

0
.7

3
2

0
.7

4
4

0
.7

3
8

0
.8

0
2

0
.8

7
1

0
.8

3
7

0
.8

5
4

0
.7

4
4

0
.7

5
3

0
.7

6

0
.7

5
6

D
0
7

0
.8

7
5

0
.8

5
3

0
.8

2
5

0
.8

3
9

0
.8

8
2

0
.8

5
4

0
.8

6
1

0
.8

5
7

0
.8

4
1

0
.8

2
4

0
.8

6
4

0
.8

4
4

0
.8

8
3

0
.8

7
1

0
.8

8
6

0
.8

7
8

D
0

6

0
.6

9
6

0
.7

2
6

0
.7

4
9

0
.7

3
7

0
.6

7
4

0
.7

0
5

0
.7

2
1

0
.7

1
3

0
.7

1
7

0
.7

7
1

0
.7

5
4

0
.7

6
2

0
.6

9
6

0
.7

2
9

0
.7

3
2

0
.7

3

1 https://cran.r-project.org/web/packages/ScottKnottESD/index.html

https://cran.r-project.org/web/packages/ScottKnottESD/index.html

M. Nevendra et al. Software Defect Prediction using Deep Learning

‒ 184 ‒

D
0
5

0
.6

2
9

0
.7

6
1

0
.7

0
7

0
.7

3
3

0
.6

4
4

0
.6

5
4

0
.6

9
7

0
.6

7
5

0
.6

6
4

0
.7

4
1

0
.7

4
7

0
.7

4
4

0
.6

9
7

0
.7

2
1

0
.7

3
2

0
.7

2
6

D
0
4

0
.6

3

0
.7

1
4

0
.6

6
7

0
.6

9

0
.6

0
7

0
.6

5
3

0
.6

5
9

0
.6

5
6

0
.6

1
9

0
.6

6
7

0
.6

4
5

0
.6

5
6

0
.6

1
8

0
.6

5
8

0
.6

4
8

0
.6

5
3

D
0
3

0
.6

4
1

0
.5

4

0
.6

4
5

0
.5

8
8

0
.4

7
1

0
.5

4
5

0
.5

6
6

0
.5

5
5

0
.6

2
5

0
.6

3
1

0
.6

5
6

0
.6

4
3

0
.6

2
8

0
.6

3
8

0
.6

4
6

0
.6

4
2

D
0
2

0
.9

1
7

0
.9

2

0
.9

2
6

0
.9

2
3

0
.9

2
1

0
.9

1
2

0
.9

2
2

0
.9

1
7

0
.9

0
7

0
.9

5
8

0
.9

4
3

0
.9

5

0
.9

4
2

0
.9

5
2

0
.9

6
2

0
.9

5
7

D
0

1

0
.7

3
1

0
.7

5
2

0
.7

8
3

0
.7

6
7

0
.7

3
9

0
.7

2
4

0
.7

5
3

0
.7

3
8

0
.7

1
7

0
.7

7
5

0
.7

5
2

0
.7

6
3

0
.7

4
8

0
.7

5
6

0
.7

7
8

0
.7

6
7

D
A

T
A

 A
cc

p
re

re
c

F
1

A
cc

p
re

re
c

F
1

A
cc

P
re

re
c

F
1

A
cc

P
re

re
c

F
1

K
N

N

S
V

M

A
d

aB
o

o
st

P
ro

p
o

se
d

A
p

p
ro

ac
h

The SK-ESD test is a mean comparison approach. It is an alternative approach of

the Scott-Knott test [36] that finds the magnitude difference of each means within

a group and between groups. The SK-ESD test finds the mean ranking. We apply

the SK-ESD test in order to find the magnitude difference between the proposed

approach and other presented ML approaches.

(a) Accuracy (b) Precision

Acta Polytechnica Hungarica Vol. 18, No. 10, 2021

‒ 185 ‒

(c) Recall (d) F1-score

Figure 2

Scott knot test result

Figure 2 shows the SK-ESD mean ranking comparison of the proposed approach.

The result of the SK-ESD test lies between the proposed approach and present

machine learning approaches. Figures 2(a), 2(b), 2(c) and 2(d) show the SK-ESD

mean ranking comparison of accuracy, precision, recall and f1-score, respectively.

In these figures, the horizontal grey dashed line indicates the mean value of all the

presented methods, helping to visualize the mean differences between each method.

We found that the proposed approach obtained the highest mean rank in all four

scenarios from the figure. This shows that the proposed approach is performing

better than the compared models for SDP. Table 6 also shows the obtained result of

our proposed approach vs Li's CNN architecture. The best-performed result is in

boldface. From Table 6, we can see that our proposed model is performed better

than Li's CNN architecture. The proposed approach improves the performance over

15 datasets concerning all the applied performance evaluations. The proposed

model overcomes Li's CNN model concerning the accuracy, precision, recall and

f1-score by 15.12%, 16.32%, 16.3% and 16.52%, respectively.

Table 6

Performance comparison of enhancing CNN model with Li's CNN architecture

Data Li's CNN Enhanced CNN

Acc Pre Rec F1 Acc Pre Rec F1

D01 0.682 0.623 0.533 0.574 0.748 0.756 0.778 0.767

D02 0.922 0.902 0.910 0.906 0.942 0.952 0.962 0.957

D03 0.468 0.528 0.570 0.548 0.628 0.638 0.646 0.642

D04 0.583 0.573 0.568 0.570 0.618 0.658 0.648 0.653

D05 0.597 0.586 0.592 0.589 0.697 0.721 0.732 0.726

D06 0.596 0.573 0.563 0.568 0.696 0.729 0.732 0.730

D07 0.883 0.872 0.888 0.880 0.883 0.871 0.886 0.878

M. Nevendra et al. Software Defect Prediction using Deep Learning

‒ 186 ‒

D08 0.644 0.653 0.672 0.662 0.744 0.753 0.76 0.756

D09 0.636 0.643 0.657 0.650 0.898 0.902 0.91 0.906

D10 0.898 0.900 0.905 0.902 0.897 0.883 0.886 0.884

D11 0.720 0.718 0.738 0.728 0.729 0.734 0.732 0.733

D12 0.462 0.462 0.467 0.464 0.749 0.765 0.754 0.759

D13 0.728 0.792 0.870 0.829 0.694 0.704 0.71 0.707

D14 0.371 0.345 0.381 0.362 0.847 0.834 0.859 0.846

D15 0.849 0.856 0.832 0.844 0.848 0.821 0.829 0.825

D16 0.491 0.486 0.489 0.487 0.586 0.561 0.584 0.572

D17 0.470 0.467 0.476 0.471 0.839 0.862 0.856 0.859

D18 0.839 0.829 0.812 0.820 0.847 0.876 0.888 0.882

D19 0.822 0.810 0.801 0.805 0.842 0.834 0.856 0.845

Average 0.666 0.664 0.670 0.666 0.775 0.782 0.790 0.786

In conclusion, we can say that the performance of enhanced CNN depends on the

input data and model architecture. The data which are less valuable are eliminated

to train the model. However, carefully increasing the architecture and parameters of

the CNN model will lead to enhance the model. As a result, it enhances the training

process and become a good prediction model. Compared to all other methods, the

proposed CNN model performed significantly better.

Conclusions

The early detection and prediction of software defects plays an important role in

modern software development, in terms of effective resource allocation. To address

this issue of SDP, in this paper, we developed an enhanced CNN approach. First, in

this approach, FS is applied to select 𝑛 ∗ 𝑛 2D metric in the training dataset, and

further, this metric is mapped into the 3D metrics. The CNN model is then trained

using the generated metrics; it can predict the defective instances once the model is

trained. The proposed enhanced CNN model significantly improves compared to

existing benchmark classification schemes such as KNN, SVM, AdaBoost and Li's

CNN model. We performed 10-fold cross-validation and calculated the average of

all runs, resulting in the final result. Scott Knott ESD's mean ranking comparison

of the proposed approach and other presented ML approaches shows that the

proposed approach achieves the highest ranking.

Future research will focus on time reduction and accelerated network training. Also,

exploration of other software metrics, aimed at the development of more efficient

DL models, will be considered.

References

[1] Arar, Ö. F., Ayan, K.: Software defect prediction using cost-sensitive neural

network. Appl. Soft Comput., 33, 2015, pp. 263-277

[2] Chen, X. et al.: Software defect number prediction: Unsupervised vs

supervised methods. Inf. Softw. Technol., 106, 2019, pp. 161-181

Acta Polytechnica Hungarica Vol. 18, No. 10, 2021

‒ 187 ‒

[3] Nevendra, M., Singh, P.: Multistage Preprocessing Approach for Software

Defect Data Prediction. In: Communications in Computer and Information

Science. 2018, pp. 505-515

[4] Miholca, D. L. et al.: A novel approach for software defect prediction

through hybridizing gradual relational association rules with artificial neural

networks. Inf. Sci. (Ny)., 441, 2018, pp. 152-170

[5] Akmel, F. et al.: A Literature Review Study of Software Defect Prediction

using Machine Learning Techniques. Int. J. Emerg. Res. Manag. Technol., 6

(6), 2018, p. 300

[6] Dam, H. K. et al.: A deep tree-based model for software defect prediction.

arXiv Prepr. arXiv1802.00921, 2018

[7] Jordan, M. I., Mitchell, T. M.: Machine learning: Trends, perspectives, and

prospects. Science (80-.)., 349 (6245), 2015, pp. 255-260

[8] Graves, A. et al.: Speech recognition with deep recurrent neural networks.

ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. - Proc., (6), 2013,

pp. 6645-6649

[9] Affonso, C. et al.: Deep learning for biological image classification. Expert

Syst. Appl., 85, 2017, pp. 114-122

[10] Chidamber, S. R., Kemerer, C. F.: A Metrics Suite for Object Oriented

Design. IEEE Trans. Softw. Eng., 20 (6), 1994, pp. 476-493

[11] Basili, V. R. et al.: A validation of object-oriented design metrics as

qualityindicators. IEEE Trans. Softw. Eng., 22 (10), 1996, pp. 751-761

[12] Gyimothy, T. et al.: Empirical Validation of Object-Oriented Metrics on

Open Source Software for Fault Prediction. IEEE Trans. Softw. Eng., 31

(10), 2005, pp. 897-910

[13] Singh, P., Verma, S.: Cross Project Software Fault Prediction at Design

Phase. Int. J. Comput. Inf. Eng., 9 (3), 2015, pp. 800-805

[14] Park, B. J. et al.: The design of polynomial function-based neural network

predictors for detection of software defects. Inf. Sci. (Ny)., 229, 2013, pp. 40-

57

[15] Elish, K. O., Elish, M. O.: Predicting defect-prone software modules using

support vector machines. J. Syst. Softw., 81 (5), 2008, pp. 649-660

[16] Shivaji, S. et al.: Reducing features to improve code change-based bug

prediction. IEEE Trans. Softw. Eng., 39 (4), 2013, pp. 552-569

[17] Dejaeger, K. et al.: Toward comprehensible software fault prediction models

using bayesian network classifiers. IEEE Trans. Softw. Eng., 39 (2), 2013,

pp. 237-257

[18] Rathore, S. S., Kumar, S.: A decision tree logic based recommendation

M. Nevendra et al. Software Defect Prediction using Deep Learning

‒ 188 ‒

system to select software fault prediction techniques. Computing, 99 (3),

2016, pp. 1-31

[19] Singh, P., Verma, S.: Multi-classifier model for software fault prediction. Int.

Arab J. Inf. Technol., 15 (5), 2018, pp. 912-919

[20] Singh, P. et al.: Fuzzy Rule-Based Approach for Software Fault Prediction.

IEEE Trans. Syst. Man, Cybern. Syst., 47 (5), 2017, pp. 826-837

[21] Yang, X. et al.: Deep Learning for Just-in-Time Defect Prediction. In: 2015

IEEE International Conference on Software Quality, Reliability and

Security. IEEE, 2015, pp. 17-26

[22] Manjula, C., Florence, L.: Deep neural network based hybrid approach for

software defect prediction using software metrics. Cluster Comput., 2018,

pp. 1-17

[23] Li, J. et al.: Software Defect Prediction via Convolutional Neural Network.

In: 2017 IEEE International Conference on Software Quality, Reliability and

Security (QRS) IEEE, 2017, pp. 318-328

[24] Viet Phan, A. et al.: Convolutional Neural Networks over Control Flow

Graphs for Software Defect Prediction. In: 2017 IEEE 29th International

Conference on Tools with Artificial Intelligence (ICTAI) IEEE, 2017, pp.

45-52

[25] Zhao, L. et al.: Software defect prediction via cost-sensitive Siamese parallel

fully-connected neural networks. Neurocomputing, 352, 2019, pp. 64-74

[26] Nagi, J. et al.: Max-pooling convolutional neural networks for vision-based

hand gesture recognition. In: 2011 IEEE International Conference on Signal

and Image Processing Applications (ICSIPA) IEEE, 2011, pp. 342-347

[27] Hinton, G. E. et al.: Improving neural networks by preventing co-adaptation

of feature detectors. arXiv Prepr. arXiv1207.0580, 2012

[28] Dahl, G. E. et al.: Improving deep neural networks for LVCSR using rectified

linear units and dropout. In: 2013 IEEE International Conference on

Acoustics, Speech and Signal Processing. IEEE, 2013, pp. 8609-8613

[29] tera-PROMISE: Welcome to one of the largest repositories of SE research

data. no date

[30] Nam, J., Kim, S.: Heterogeneous defect prediction. In: Proceedings of the

2015 10th Joint Meeting on Foundations of Software Engineering -

ESEC/FSE 2015. New York, New York, USA: ACM Press, 2015, pp. 508-

519

[31] Wu, X. et al.: Top 10 algorithms in data mining. Knowl. Inf. Syst., 14 (1),

2008, pp. 1-37

[32] Vapnik, V.: The nature of statistical learning theory. Springer science &

business media, 2013

Acta Polytechnica Hungarica Vol. 18, No. 10, 2021

‒ 189 ‒

[33] Fix, E.: Discriminatory analysis: nonparametric discrimination, consistency

properties. USAF School of Aviation Medicine, 1951

[34] Kohavi, R.: A Study of Cross-Validation and Bootstrap for Accuracy

Estimation and Model Selection. Int. Jt. Conf. Artif. Intell., 14 (2), 1995, pp.

1137-1145

[35] Tantithamthavorn, C. et al.: The Impact of Automated Parameter

Optimization on Defect Prediction Models. IEEE Trans. Softw. Eng., 45 (7),

2019, pp. 683-711

[36] Jelihovschi, E. G. et al.: The ScottKnott clustering algorithm. Univ. Estadual

St. Cruz-UESC, Ilheus, Bahia, Bras., 2014

