Skip to main content
Log in

Hydroxy Interlayers in Expansible Layer Silicates

  • Published:
Clays and Clay Minerals

Abstract

Vermiculites and smectites in soils and sediments are frequently partially interlayered or “chloritized”. Dioctahedral expansible layer silicates are those most frequently interlayered, and hydroxy-Al appears to be the principal component of the non-exchangeable interlayer material.

The most favorable soil conditions for interlayer formation appear to be: moderate pH (4·6–5·8), frequent wetting and drying cycles, and low organic matter content.

In marine sediments, hydroxy-Mg interlayering may be significant. Soil-derived clays containing partially filled hydroxy-Al “brucite” sheets may be filled out with hydroxy-Mg. Under reducing conditions, hydroxy-Fe interlayers may be important.

Depending on the OH/Al ratio and Al content of hydroxy-Al interlayers, expansible layer silicate may either promote or retard the formation of gibbsite. Interlayered expansible layer silicates also may be precursors to kaolinite.

Résumé

Les vermiculites et les smectites en sols et sédiments sont souvent partiellement répartis en feuillets interstratifies ou “chlorées”. Les silicates en couches expansibles dioctaédriques sont celles qui sont le plus souvent en feuillets interstratifies et l’hydroxy-Al apparaît être le principal composant du matériau non-interchangeable de la feuillet interstratifie.

Les conditions du sol les plus favorables pour la formation de feuillets interstratifies semblent être: un pH 4,6–5,8 modéré, de fréquents cycles d’humidité et de sècheresse, et une faible teneur en matière organique.

Dans les sédiments marins, une feuillet interstratifie d’hydroxy-Mg peut être importante. Des argiles dérivées du sol contenant des feuillets de “brucite” partiellement remplies d’hydroxy-Al peuvent être remplies d’hydroxy-Mg. Dans certains conditions, les feuillets interstratifies d’hydroxy-Fe peuvent être importantes.

Selon le rapport OH/Al et la teneur en Al’dhydroxo-Al des feuillets interstratifies, le silicate de la feuillet expansible peut soit activer, soit retarder la formation de gibbsite. Les silicates en feuillets interstratifies de la feuillet expansible peuvent aussi être les précurseurs de kaolinite.

Kurzreferat

Vermiculite und Seifensteine in Böden und Ablagerungen sind häufig teilweise mit Zwischenschichten versehen oder “chlotitisiert”. Am häufigsten kommen Zwischenschichten in den dioktahedralen Silikaten mit Quellschichten vor und der Hauptbestandteil des nicht-austauschbaren Zwischenschichtmaterials scheint Hydroxy-Aluminium zu sein.

Die günstigsten Bodenbedingungen für die Bildung von Zwischenschiehten sind scheinbar die folgenden: mässiges pH 5,6–5,8, häufige Nass-und Trockenzyklen, und niedriger Gehalt an organischem Material.

In Meeresablagerungen kann eine bedeutende Zwischenlagerung von Hydroxy-Magnesium vorkommen. Aus dem Boden stammende Tone, die teilweise gefüllte Hydroxy-Aluminium “Brucit” Schichten enthalten, können durch Hydroxy-Mg ausgefüllt werden. Unter Reduktionsbedingungen können Hydroxy-Fe Zwischenschichten von Bedeutung sein.

Je nach dem OH/Al Verhältnis und dem Al Gehalt der Hydroxy-Al Zwischenschichten können Silikate mit Quellschichten die Bildung von Gibbsit entweder fördern oder verzögern. Silikat-Quellschichten mit Zwischenschichten können auch Vorläufer von Kaolinit sein.

Резюме

В грунтах и отложениях вермикулиты и смектиты обычно переслогны частично или-же подвергнуты хлоритизации. Диоктаздрииеские расширяемые слоистые силикаты чаше всего переслоены и главной составляющей необменного прослоенного материала является гидрокси-Аl.

Наиболее благоприятные грунтовые условия для образования прослойков вероятно: умеренное рН (4,6-5,8), частые циклы смачивания и сушки и малое содержание органических веществ.

В морских отложениях, прослаивание гидрокси-Мg может оказаться значительным. Полученные из грунта глины содержат слои брусита, частично наполненные гидрокси-А1, которые могут быть выполнены гидрокси-Мg. В восстановительных условиях важными могут оказаться прослойки гидрокси-Ре.

В зависимости от отношения ОН/Аl и от содержания в прослойках гидрокси-Аl, расширяемые слоистые силикаты активируют или замедляют образованиг гибсита. Прослоенные расширяемые слоистые силикаты могут также являться предшественниками каолинита.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschuier, Z. S., Dwornik, E. J., and Kramer, H. (1963) Transformation of montmorillonite to kaolinite during weathering: Science 141, 148–152.

    Article  Google Scholar 

  • Aveston, J. (1965) Hydrolysis of the aluminum ion: Ultracentrifugation and acidity measurements: J. Chem. Soc. 4438–4443.

    Google Scholar 

  • Bailey, S. W. (1966) The status of clay minerai structures: Clays and Clay Minerals, Pergamon Press, New York, 14, 1–23.

    Article  Google Scholar 

  • Bailey, S. W., and Tyler, S. A. (1960) Clay minerais associated with the Lake Superior iron ores: Econ. Geol. 55, 150–175.

    Article  Google Scholar 

  • Bailey, S. W., and Brown, B. E. (1962) Chlorite polytypism: I. Regular and semi-random one-layer structures: Am. Mineralogist 47, 819–850.

    Google Scholar 

  • Barnhisel, R. I. (1964) The Formation and Stability of Aluminum Interlayers in Clays: Unpublished Ph.D. Thesis, Virginia Polytechnic Institute, Blacksburg, Virginia.

    Google Scholar 

  • Barnhisel, R. I., and Rich, C. I. (1963) Gibbsite formation from aluminum interlayers: Soil Sci. Soc. Am. Proc. 27, 632–635.

    Article  Google Scholar 

  • Barnhisel, R. I., and Rich, C. I. (1965) Gibbsite, bayerite, and nordstrandite formation as affected by anions, pH, and mineral surfaces: Soil Sci. Soc. Am. Proc. 29, 531–534.

    Article  Google Scholar 

  • Barnhisel, R. I., and Rich, C. I. (1966) Preferential hydroxyaluminum interlayering in montmorillonite and vermiculite: Soil Sci. Soc. Am. Proc. 30, 35–39.

    Article  Google Scholar 

  • Barshad, I. (1960) The effect of the total chemical composition and crystal structure of soil minerais on the nature of exchangeable cations in acidified clays and in naturally occurring acid soils: Trans. 7th Intern. Congr. Soil Sci. 2, 435–444.

    Google Scholar 

  • Biscaye, P. E. (1964) Mineralogy and sedimentation of the deep-sea sediment fine fraction in the Atlantic Ocean and adjacent seas and oceans: Geochemistry Tech. Report 8, Yale University, Dept. of Geology. 65 pp.

    Google Scholar 

  • Bradley, W. F. (1953) Analysis of mixed-layer clay mineral structures: Anal. Chem. 25, 727–730.

    Article  Google Scholar 

  • Brown, C. Q., and Ingram, R. L. (1954) The clay minerais of the Neuse River sediments: J. Sediment Petrol 24, 196–199.

    Article  Google Scholar 

  • Brown, G. (1953) The dioctahedral analogue of vermiculite: Clay Min. Bull. 2, 64–69.

    Article  Google Scholar 

  • Brown, G. (1954) Soil morphology and mineralogy. A qualitative study of some gleyed soils from North-West Eng↭d: J. Soil Sci. 5, 145–155.

    Google Scholar 

  • Bryant, J. P., and Dixon, J. B. (1964) Clay mineralogy and weathering of a Red-Yellow Podzolic soil from quartz mica schist in the Alabama Piedmont: Clays and Clay Minerals, Pergamon Press, New York, 12, 509–521.

    Article  Google Scholar 

  • Brydon, J. E., Clark, J. S., and Osborne V. (1961) Dioctahedral Chlorite: Can. Mineralogist 6, 595–609.

    Google Scholar 

  • Brydon, J. E., and Kodama, H. (1966) The nature of aluminum hydroxide montmorillonite complexes: Am. Mineralogist 51, 875–888.

    Google Scholar 

  • Caillère, S., and Hénin, S. (1949) Formation of chlorite from montmorillonite: Mineral. Mag. 28, 612–620.

    Google Scholar 

  • Caillère, S., and Hénin S. (1950) Mécanisme d’évolutions des minéraux phylliteaux: Trans. 4th Intern. Congr. Soil Sci. 1, 96–98.

    Google Scholar 

  • Carstea, D. D. (1965) Conditions of Al, Fe, und Mg Interlayer Formation in Montmorillonite and Vermi-culite: Master of Science thesis, Oregon State University, Corvallis, Oregon.

    Google Scholar 

  • Carstea, D. D. (1967) Formation and Stability of Al, Fe, and Mg Interlayers in Montmorillonite and Vermiculite. Unpublished Ph.D. thesis, Oregon State University, Corvallis, Oregon. 117 pp.

    Google Scholar 

  • Clark, J. S. (1964a) Aluminum and iron fixation in relation to exchangeable hydrogen in soils: Soil Sci. 98, 302–306.

    Article  Google Scholar 

  • Clark, J. S. (1964b) Some cation-exchange properties of soils containing free oxides: Can. J. Soil Sci. 44, 203–211.

    Article  Google Scholar 

  • Clark, J. S., Brydon, J. E., and Farstad, L. (1963) Chemi-cal and clay mineralogical properties of the Concretionary Brown Soils of British Columbia, Canada: Soil Sci. 95, 344–352.

    Article  Google Scholar 

  • Clark, J. S. and Nichol (1965) The lime potential-percent base saturation relations of acid surface horizons of mineral andorganic soils: Can. J. Soil Sci. 46, 281–285.

    Article  Google Scholar 

  • Coleman, N. T., Ragland, J. L., and Craig, D. (1960) An unexpected reaction between Al-Clay or Al-Soil CaCl2: Soil Sci. Soc. Am. Proc. 24, 419–420.

    Article  Google Scholar 

  • Coleman, N. T. (1962) Decomposition of clay s and the fate of aluminum: Econ. Geol. 57, 1207–1218.

    Article  Google Scholar 

  • Coleman, N. T., and Thomas, G. W. (1964) Buffer curves of acid clays as affected by the presence of ferrie iron and aluminum: Soil Sci. Soc. Am. Proc. 28, 187–190.

    Article  Google Scholar 

  • Coleman, N. T., Thomas, G. W., Le Roux, F. H., and Bredell, G. (1964) Salt exchangeable and titratable acidity in bentonite-sequioxide mixtures: Soil S ci. Soc. Am. Proc. 28, 35–37.

    Article  Google Scholar 

  • Cotton, S. B. (1965) Hydrolysis of Aluminum in Syn-thetic Cation Exchange Resins and Dioctahedral Vermiculite: Unpublished Ph.D thesis, Virginia Polytechnic Institute, Blacksburg, Virginia. 200 pp.

    Google Scholar 

  • De Villiers, J. M., and Jackson, M. L. (1967) Cation exchange capacity variations with pH in soil clays: Soil Sci. Soc. Am. Proc. 31, 473–477.

    Article  Google Scholar 

  • Dion, H. G. (1944) Iron oxide removal from clays and its influence on the base-exchange properties and X-ray diffraction pattern of clays: Soil Sci. 58, 411–424.

    Article  Google Scholar 

  • Dixon, J. B., and Jackson, M. L (1959) Dissolution of interlayers from intergradient soil clays after preheatingat 400°C: Science 129, 1616–1617.

    Article  Google Scholar 

  • Dixon, J. B., and Jackson, M. L. (1960) Mineralogical analysis of soil clays involving vermiculite-chlorite-kaolinite differentiation: Clays and Clay Minerals, Pergamon Press, New York, 8, 274–286.

    Article  Google Scholar 

  • Dixon, J. B., and Jackson, M. L. (1962) Properties of intergradient chlorite-expansible layer silicates of soils: Soil Sci. Soc. Am. Proc. 26, 358–362.

    Article  Google Scholar 

  • Douglas, L. A. (1965) Clay mineralogy of a Sassafras soil in New Jersey: Soil Sci. Soc. Am. Proc. 29, 163–167.

    Article  Google Scholar 

  • Droste, J. B. (1956) Alteration of clay minerais by weathering in Wisconsin tills; Bull. Geol. Soc. Am. 67, 911–918.

    Article  Google Scholar 

  • Eggleton, R. A., and Bailey, S. W. (1967) Structural aspects of dioctahedral chlorite: Am. Mineralogist 52, 673–689.

    Google Scholar 

  • Frink, C. R. (1965) Characterization of aluminum interlayers in soil clays: Soil Sci. Soc. Am. Proc. 29, 379–382.

    Article  Google Scholar 

  • Frink, C. R., and Peech, M. (1963) Hydrolysis and exchange reactions of the aluminum ion in hectorite and montmorillonite suspensions: Soil Sci. Soc. Am. Proc. 27, 527–530.

    Article  Google Scholar 

  • Fripiat, J. J., Chaussidon, J., and Touillaux, R. (1960) Study of dehydration of montmorillonite and vermiculite by infrared spectroscopy: J. Phys. Chem. 64, 1234–1241.

    Article  Google Scholar 

  • Fripiat, J. J., Van Cauwelaert, F., and Bosmans, H. (1965) Structure of aluminum cations in aqueous solutions: J. Phys. Chem. 69, 2458–2461.

    Article  Google Scholar 

  • Gastuche, M. C, and Herbillon, A. (1962) Étude des gels d’alumine: Crystallisation in milieu desione: Bull. Soc. Chini., France, 1402–1412.

    Google Scholar 

  • Girod, J., and Lacroix, J. (1960) Influence de l’acidite’ sur les movements de l’ aluminium dans un mélange d’argiles: C. R. Acad. Sci., Paris, 250, 4182–4183.

    Google Scholar 

  • Glass, H. D. (1958) Clay mineralogy of Pennsylvanian sediments in southern Illinois: Clays and Clay Minerals Nati. Acad. Sci., Natl. Res. Council Publ. 566, 227–241.

    Google Scholar 

  • Glenn, R. C. (1960) Chemical weathering of layer silicate minerais in loess-derived Loring silt loam of Mississippi: Trans. 7th Intern. Congr. Soil Sci. 7, 523–532.

    Google Scholar 

  • Glenn, R. C, Jackson, M. L., Hole, F. D., and Lee, G. B. (1960) Chemical weathering of layer silicate clays in loess-derived Tama silt loam of southwestern Wiscon-sin: Clays and Clay Minerals, Pergamon Press, New York, 8, 63–83.

    Article  Google Scholar 

  • Glenn, R. C., and Nash, V. E. (1964) Weathering relation-ships between gibbsite, kaolinite, chlorite, and expansible layer silicates in selected soils from the lower Miss. Coastal Plain: Clays and Clay Minerals, Pergamon Press, New York, 12, 529–548.

    Article  Google Scholar 

  • Griffin, M., and Ingram, R. L. (1955) Clay minerais of the Neuse River estuary: J. Sediment. Petrol. 25, 194–200.

    Article  Google Scholar 

  • Grim, R. E., and Johns, W. D. (1954) Clay mineral investigation of sediments in the northern Gulf of Mexico: Clays and Clay Minerals, Natl. Acad. Sci. —Natl. Res. Council Publ. 327, 81–103.

    Google Scholar 

  • Grim, R. E., and Loughnan, F. C. (1962) Clay minerais in sediments from Sydney Harbour, Australia: J. Sediment. Petrol. 32, 240–248.

    Google Scholar 

  • Hathaway, John C. (1955) Studies on some vermiculitetype clay minerais: Clays and Clay Minerals, Natl. Acad. Sci., Natl. Res. Council. Publ. 395, 74–86.

    Google Scholar 

  • Hayashi, H., and Oinuma (1964) Aluminian chlorite from Kamikita mine, Japan: Clay Sci. News Ed. 2, 22–30.

    Google Scholar 

  • Hsu, Pa Ho (1966) Formation of gibbsite from aging hydroxy-aluminum solutions: Soil Sci. Soc. Am. Proc. 30, 173–176.

    Article  Google Scholar 

  • Hsu, Pa Ho, and Rich, C. I. (1960) Aluminum fixation in a synthetic cation exchanges: Soil Sci. Soc. Am. Proc. 24, 21–25.

    Article  Google Scholar 

  • Hsu, Pa Ho, and Bates, T. F. (1964a) Fixation of hydroxy-aluminum polymers by vermiculite: Soil Sci. Soc. Am. Proc. 28, 763–969.

    Article  Google Scholar 

  • Hsu, Pa Ho, and Bates, T. F. (1964b) Formation of X-ray amorphous and crystalline aluminum hydroxides: Mineral. Mag. 33, 749–768.

    Google Scholar 

  • Huang, P. M., and Jackson, M. L. (1966) Fluoride inter-action with clays in relation to third buffer range: Nature 211, 779–780.

    Article  Google Scholar 

  • Jackson, M. L. (1959) Frequency distribution of clay minerais in major great soil groups as related to the factors of soil formation: Clays and Clay Minerals, Pergamon Press, New York, 6, 133–143.

    Article  Google Scholar 

  • Jackson, M. L. (1960) Structural role of hydronium in layer silicates during soil genesis: Trans. 7th Int. Congr. Soil Sci. 2, 445–455.

    Google Scholar 

  • Jackson, M. L. (1963a) Interlayering of expansible layer silicates in soils by chemical weathering: Clays and Clay Minerals, Pergamon Press, New York, 11, 29–46.

    Article  Google Scholar 

  • Jackson, M. L. (1963) Aluminum bonding in soils: A unifying principle in soil science: Soil Sci. Soc. Am. Proc. 27, 1–10.

    Article  Google Scholar 

  • Jackson, M. L. (1965) Clay transformation in soil genesis during the Quaternary: Soil Sci. 99, 15–22.

    Article  Google Scholar 

  • Jackson, M. L., Whittig, L. D., Vanden Heuvel, R. C, Kaufman, A., and Brown, B. E. (1954) Some analyses of soil montmorin, vermiculite, mica, chlorite and interstratified layer silicates: Clays and Clay Minerais, Natl. Acad. Sci., Natl. Res. Council Publ. 327, 218–240.

    Google Scholar 

  • Jeffries, C. D., Rolfe, B. N., and Kunze, G. W. (1953) Mica weathering sequence in the Highfield and Chester soil profiles: Soil Sci. Soc. Am. Proc. 17, 337–339.

    Article  Google Scholar 

  • Johnson, L. G., and Jeffries, C. D. (1957) The effect of drainage on the weathering of the clay minerais in the Allenwood Catena of Pennsylvania: Soil Sci. Soc. Am. Proc. 21, 539–542.

    Article  Google Scholar 

  • Jones, L. H. P., Milne, A. A., and Attiwill, P. M. (1964) Dioctahedral vermiculite and chlorite in highly weath-ered red loams in Victoria Australia: Soil Sci. Soc. Am. Proc. 28, 108–113.

    Article  Google Scholar 

  • Kaddah, M., and Coleman, N. T. (1967) Salt displacement of acid-treated trioctahedral vermiculites: Soil Sci. Soc. Am. Proc. 31, 333–336.

    Article  Google Scholar 

  • Kawasaki, H., and Aomine, S. (1964) Influence of pH on the formation of the hydroxy-Al-montmorillonite complex: Soil Sci. Plant Nutr. 10, 117–183.

    Article  Google Scholar 

  • Kawaski, H., and Aomine, S. (1965) Hydroxy-Al complexes of montmorillonite and vermiculite and identifi-cation of intergrades of montmorillonite-chlorite and vermiculite-chlorite: Soil Sci. Plant Nutr. 11, 24–29.

    Article  Google Scholar 

  • Klages, M. G., and White, J. L. (1957) A chlorite-like mineral in Indiana soils: Soil Sci. Soc. Am. Proc. 21, 16–20.

    Article  Google Scholar 

  • Koizumi, M., and Roy, R. (1959) Synthetic montmorillonoids with variable exchange capacity: Am. Mineralogist 44, 788–805.

    Google Scholar 

  • Krebs, R. D., and Tedrow, J. C. F. (1957) Genesis of three soils derived from Wisconsin till in New Jersey: Soil Sci. 83, 207–218.

    Article  Google Scholar 

  • Kuron, H., Preuse, U. A., and Föhrenbacker, H. U. (1961) Kolloid-chemische und tonmineralogische Untersuchungen an zwei Profilen der Wesermarsch: Z. Pflanzenernähr. DÜng. Boden. 92, 233–247.

    Article  Google Scholar 

  • Leith, C. J., and Craig, R. M. (1965) Mineralogic trends induced by deep residual weathering: Am. Mineralogist 50, 1957–1970.

    Google Scholar 

  • Le Roux, J., and de Villiers, J. M. (1965) The contribution of hydronium and aluminum ions to acidity in some Natal soils: S. Afr. J. Agri. Sci. 8, 1079–1090.

    Google Scholar 

  • Longeut-Escard, J. (1950) Fixation des hydroxydes par la montmorillonite: Trans 4th Intern. Congr. Soil Sci. 3, 40–44.

    Google Scholar 

  • Loughnan, F. C., Grim, R. D., and Vernet, J. (1962) Weathering of some Triassic shales in the Sydney area: J. Geol. Soc. Australia 8, 245–257.

    Article  Google Scholar 

  • Lynn, W. C, and Whittig, L. D., (1966) Alternation and formation of clay minerais during cat clay formation: Clays and Clay Minerals, Pergamon Press, New York, 14, 241–248.

    Article  Google Scholar 

  • MacEwan, D. M. C. (1950) Some notes on the recording and interpretation of X-ray diagrams of soil clays: J. Soil Sci. 1, 90–103.

    Article  Google Scholar 

  • Mathieson, A. M., and Walker, G. F. (1954) Crystal structure of mangesium-vermiculite: Am. Mineralogist 39, 231–255.

    Google Scholar 

  • Matsui, T., and Totani, M. (1963) Studies on some fractions of vermiculite clay separates from Japanese soils: Clay Sci. 1, 155–166.

    Google Scholar 

  • Muller, G. (1961) Vorläufige Mulleilung Über ein neues dioktaedrisches Phyllosilikat der Chlorite-Gruppe: Neues Jahrb. Mineral. Monatsh., 112–120.

    Google Scholar 

  • Müller, G. (1963) Zur Kenntnis dioktaedriser Vierschict-phyllosilikate (Sudoit-Reihe der Sudoit-Chlorit-Gruppe): Proc. Intern. Clay Conf., Stockholm, Pergamon Press, New York, 121–130.

    Google Scholar 

  • Nash, V. E. (1963) Chemical and mineralogical property of an Orangeburg profile: Soil Sci. Soc. Am. Proc. 27, 688–693.

    Article  Google Scholar 

  • Nelson, B. W. (1960) Clay mineralogy of the bottom sediments, Rappahannock River, Virginia: Clays and Clay Minerals, Pergamon Press, New York, 7, 135–147.

    Article  Google Scholar 

  • Nelson, B. S. (1963) Clay minerai diagenesis in the Rappahennock estuary: an explanation: Clays and Clay Minerals, Pergamon Press, New York, 11, p. 210.

    Article  Google Scholar 

  • Page, A. L., and Whittig, L. D. (1961) Iron absorption by montmorillonite Systems: II. Determination of adsorb-ed iron: Soil Sci. Soc.Am. Proc. 25, 282–286.

    Article  Google Scholar 

  • Paver, H., and Marshall, C. E. (1934) The role of aluminum in the reactions of the clays: J. Soc. Chem. Ind. 53, 750–760.

    Article  Google Scholar 

  • Puwluk, S. (1963) Characteristics of 14 Å clay minerais in the B horizons of podzolized soils of Alberta: Clays and Clay Minerals, Pergamon Press, New York, 11, 74–82.

    Article  Google Scholar 

  • Pearson, R. W., and Ensminger, L. E. (1949) Types of clay minerais in Alabama soils: SoilSci. Soc.Am. Proc. 13, 153–156.

    Article  Google Scholar 

  • Poncelet, G. M., and Brindley, G. W. (1967) Experimental formation of kaolinite from montmorillonite at low temperatures: Am. Mineralogist 52, 1161–1173.

    Google Scholar 

  • Post, D. F., and White, J. L. (1967) Clay mineralogy and mica-vermiculite layer charge density distribution in the Switzerland soils of Indiana: Soil Sci. Soc. Am. Proc. 31, 419–424.

    Article  Google Scholar 

  • Powers, M. C. (1954) Clay diagenesis in the Chesapeake Bay area: Clays and Clay Minerais, Natl. Acad. Sci., Natl. Res. Council Publ. 327, 68–80.

    Google Scholar 

  • Powers, M. C. (1959) Adjustment of clays to chemical change and the concept of the equivalence level: Clays and Clay Minerals, Pergamon Press, New York, 6, 42–60.

    Google Scholar 

  • Quigley, F. M., and Martin, R. T. (1963) Chloritized weathering products of a New England glacial till: Clays and Clay Minerals, Pergamon Press, New York, 10, 107–116.

    Article  Google Scholar 

  • Ragland, J. L., and Coleman, N. T. (1960) The hydrolysis of aluminum salts in clay and soil Systems: Soil Sci. Soc. Am.Proc. 24, 457–460.

    Article  Google Scholar 

  • Reuter, G., and Menning, P. (1964) Tonminerale in Staunässeboden Wissenschaftliche: Z. Universitat Rostoch, Math. -Nat. Reihe. 4, 573–582.

    Google Scholar 

  • Reuter, G., and Menning, P. (1965) Ergebnisse der Differentialthermoalyse bei der Untersuchung von Staunässeböden auf Jungpleistozänanen Sedimenten: First Intern. Thermal Analysis Conf., Aberdeen, Scotland, 232–233.

    Google Scholar 

  • Rich, C. I. (1954) Clay minerais in Tatum silt loam soil: Virginia J. Sci. 5, p. 300.

    Google Scholar 

  • Rich, C. I. (1960a) Aluminum in interlayers of vermiculite: Soil Sci. Soc.Am. Proc. 24, 26–32.

    Article  Google Scholar 

  • Rich, C. I. (1960b) Ammonium fixation by two Red-Yellow Podzolic soils as influenced by interlayer-Al in clay minerais: Trans. 7th Int. Congr. Soil Sci. 4, 468–475.

    Google Scholar 

  • Rich, C. I. (1962) Removal of excess salt in cation ex-change capacity determinations: Soil Sci. 93, 87–94.

    Article  Google Scholar 

  • Rich, C. I. (1966) Concentration of dioctahedral mica and vermiculite using a fluoride solution: Clays and Clay Minerals, Pergamon Press, New York, 14, 91–98.

    Article  Google Scholar 

  • Rich, C. I., and Obenshain, S. S. (1955) Chemical and clay minerai properties of a Red-Yellow Podzolic soil derived from muscovite schist: Soil Sci. Soc.Am. Proc. 19, 334–331.

    Article  Google Scholar 

  • Rich, C. I., and Cook, M. G. (1963) Formation of diocta-hedral vermiculite in Virginia soils: Clays and Clay Minerals, Pergamon Press, New York, 10, 96–106.

    Article  Google Scholar 

  • Rich, C. I., and Black, W. R. (1964) Potassium exchange as affected by cation size, pH, and mineral structure: Soil Sci. 97, 384–390.

    Article  Google Scholar 

  • Sand, L. B. (1956) On the genesis of residual kaolins: Am. Mineralogist 41, 28–40.

    Google Scholar 

  • Sawhney, B. L. (1960a) Aluminum interlayers in clay minerais, montmorillonite and vermiculite: laboratory synthesis: Nature 187, 261–262.

    Article  Google Scholar 

  • Sawhney, B. L. (1960b) Weathering and aluminum interlayers in a soil catena: Hollis-Charlton-Sutton-Leicester. Soil Sci. Soc.Am. Proc. 24, 221–226.

    Article  Google Scholar 

  • Sawhney, B. L. (1960c) Aluminum interlayers in clay: Trans. 7th Int. Congr. Soil Sci. 4, 476–481.

    Google Scholar 

  • Sayegh, A. H., Harward, M. E., and Knox, E. G. (1965) Humidity and temperature interactions with respect to K-saturated expanding clay minerais: Am. Mineralo-gist 50, 490–495.

    Google Scholar 

  • Scheffer, F., Meyer, B., and Tölster, U. H. (1961) Dreischicht-Tonminerale mit Aluminum Zwischen-schichtbelegung in mitteldeutschen sauren Braunen Waldböden: Z. Pflanzenerähr., DÜng., Bodenk. 92, 201–207.

    Article  Google Scholar 

  • Schofield, R. K. (1946) Factors influencing ion exchange in soils: Soils and Fertilizers 9, 265.

    Google Scholar 

  • Schwertmann, U. (1961) Der Mineralbestand der Fraktion < 2μ einiger Böden aus Sedimenten und seine Eigen-schaften: Z. Pflanzenernähr., Düng., Bodenk. 95, 209–227.

    Article  Google Scholar 

  • Schwertmann, U., and Jackson, M. L. (1963) Hydrogen-aluminum clays: a third buffer range appearing in Potentiometrie titration: Science 139, 1052–1053.

    Article  Google Scholar 

  • Schwertmann, U., and Jackson, M. L. (1964) Influence of hydroxy aluminum ions on pH titration curves of hydronium-aluminum clays: Soil Sci. Soc.Am. Proc. 28, 179–183.

    Article  Google Scholar 

  • Shen, Mu Ju, and Rieh, C. I. (1962) Aluminum fixation in montmorillonite: Soil Sci. Soc. Am. Proc. 26, 33–36.

    Article  Google Scholar 

  • Shirozu, H. and Bailey, S. W. (1966) Crystal structure of a two-layer Mg-vermiculite: Am. Mineralogist 51, 1124–1143.

    Google Scholar 

  • Singleton, P. G. (1965) Nature of interlayer materials in Silicate clays of selected Oregon soils: Ph.D. thesis, Oregon State University, Corvallis, Oregon.

    Google Scholar 

  • Slaughter, M., and Milne, I. H. (1960) The formation of chlorite-like structures from montmorillonite: Clays and Clay Minerals, Pergamon Press, New York, 7, 114–124.

    Article  Google Scholar 

  • Spyridokis, D. E., Chesters, G., and Wilde, S. A. (1967) Kaolinization of biotite as a resuit of coniferous seedling growth: Soil Sci. Soc. Am. Proc. 31, 203–209.

    Article  Google Scholar 

  • Stephen, I. (1952) A study of rock weathering with reference to the soils of the Malvern Hills II. Weathering of appinite and “ivy-scar rock”: J. Soil Sci. 3, 219–237.

    Article  Google Scholar 

  • Stephen, I., and MacEwan, D. M. C. (1951) Some chloritic clay minerais of unusual type: Clay Minerals Bull, 1, 157–162.

    Article  Google Scholar 

  • Sudo, Toshio (1963) Interstratified minerais from Japan, their geological behaviors and origins: Proc. Intern. Clay Conf., Stockholm, Pergamon Press, New York, 113–120.

    Google Scholar 

  • Sudo, T., and Hayaski, H. (1956) Types of mixed-layer minerais from Japan: Clays and Clay Minerals, Natl. Acad. Sci. Natl. Res. Council Publ. 456, 389–412.

    Google Scholar 

  • Tamura, T. (1956) Weathering of mixed layer clays in soils: Clays and Clay Minerals, Natl. Acad. Sci., Natl. Res. Council Publ. 456, 413–422.

    Google Scholar 

  • Tamura, T. (1957) Identification of the 14 Å clay mineral component: Am. Mineralogist 42, 107–110.

    Google Scholar 

  • Tamura, T. (1958) Identification of clay minerals from acid soils: J. Soil Sci. 9, 141–147.

    Article  Google Scholar 

  • Tamura, T., Hanna, R. M., and Shearin, A. E. (1959) Properties of Brown Podzolic soils: Soil Sci. 87, 189–197.

    Article  Google Scholar 

  • Thomas, G. W. (1960) Forms of aluminum in cation exchangers: Trans. 7th Intern. Congr. Soil Sci. 2, 364–369.

    Google Scholar 

  • Treadwell, W. D. (1931) Über ein basiches Aluminum-chlorid: Helv Chim. Acta 14, 473–481.

    Article  Google Scholar 

  • Turner, R. C. (1965) A study of the lime potential 4. The lime potential during titration of Wyoming bentonite originally saturated with ferrie ions: Soil Sci. 99, 88–92.

    Article  Google Scholar 

  • Turner, R. C., Nichol, W. E., and Brydon, J. E. (1963) A study of the lime potential 3: Soil Sci. 95, 186–191.

    Article  Google Scholar 

  • Turner, R. C., and Brydon, J. E. (1965) Factors affecting the solubility of Al(OH)3 precipitated in the presence of montmorillonite: Soil Sci. 100, 176–181.

    Article  Google Scholar 

  • Turner, R. C., and Brydon, J. E. (1967) Effect of length of time of reaction on some properties of suspensions of Arizona bentonite, illite, and kaolinite in which aluminum hydroxide is precipitated: Soil Sci. 103, 111–117.

    Article  Google Scholar 

  • Van der Marel H. W. (1964) Identification of chlorite and chlorite-related minerais in sediments: Beitn. Miner. Petrog. 9, 462–480.

    Article  Google Scholar 

  • Volk, V. V., and Jackson, M. L. (1964) Inorganic pH dependent cation exchange charge in soils: Clays and Clay Minerals, Pergamon Press, New York, 12, 218–295.

    Google Scholar 

  • Weed, S. B., and Nelson, L. A. (1962) Occurrence of chlorite-like intergrade clay minerais in Coastal Piain, Piedmont and mountain soils of North Carolina: Soil Sci. Soc. Am. Proc. 26, 393–398.

    Article  Google Scholar 

  • Weiss, A. (1963) Mica-type layer silicates with alkylamo-nium ions: Clays and Clay Minerals, Pergamon Press, New York, 10, 191–224.

    Article  Google Scholar 

  • Weiss, Armin, Härbich, A., and Weiss, Alarich (1964) Einige Eigenshaften der 1. bis 4. Wasserschicht in guellungs-fähigen Schichtsilikaten: Ber. Deut. Keram. Ges. 41, 687–690.

    Google Scholar 

  • Weissmiller, R. A., Ahlrichs, J. L., and White, J. L.(1967) Infrared studies of hydroxy aluminum interlayer material. Soil Sci. Soc. Am. Proc. 31, 459–463.

    Article  Google Scholar 

  • Whitehouse, V. G., and McCarter R. S. (1958) Diagenetic modification of clay mineral types in artiflcial sea water: Clays and Clay Minerals, Natl. Acad. Sci., Natl. Res. Council Publ. 566, 81–119.

    Google Scholar 

  • Whittig, L. D. (1959) Characteristics and genesis of a Solodized-Solonetz of California: Soil Sci. Soc. Am. Proc. 23, 469–473.

    Article  Google Scholar 

  • Wilson, M. J. (1966) The weathering of biotite in some Aberdeenshire soils: Mineral. Mag. 35, 1080–1093.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An invited paper presented at the 16th Clay Minerals Conference, Denver, Colorado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rich, C.I. Hydroxy Interlayers in Expansible Layer Silicates. Clays Clay Miner. 16, 15–30 (1968). https://doi.org/10.1346/CCMN.1968.0160104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1968.0160104

Navigation