Skip to main content
Log in

Black Shale—Its Deposition and Diagenesis

  • Published:
Clays and Clay Minerals

Abstract

Black shale is a dark-colored mudrock containing organic matter that may have generated hydrocarbons in the subsurface or that may yield hydrocarbons by pyrolysis. Many black shale units are enriched in metals severalfold above expected amounts in ordinary shale. Some black shale units have served as host rocks for syngenetic metal deposits.

Black shales have formed throughout the Earth’s history and in all parts of the world. This suggests that geologic processes and not geologic settings are the controlling factors in the accumulation of black shale. Geologic processes are those of deposition by which the raw materials of black shale are accumulated and those of diagenesis in response to increasing depth of burial.

Depositional processes involve a range of relationships among such factors as organic productivity, clastic sedimentation rate, and the intensity of oxidation by which organic matter is destroyed. If enough organic material is present to exhaust the oxygen in the environment, black shale results.

Diagenetic processes involve chemical reactions controlled by the nature of the components and by the pressure and temperature regimens that continuing burial imposes. For a thickness of a few meters beneath the surface, sulfate is reduced and sulfide minerals may be deposited. Fermentation reactions in the next several hundred meters result in biogenic methane, followed successively at greater depths by decarboxylation reactions and thermal maturation that form additional hydrocarbons. Suites of newly formed minerals are characteristic for each of the zones of diagenesis.

Резюме

Чёрные сланец является темно окрашенной глинистой породой, содержащей органический материал, который мог явиться источником углеводородов в недрах или из которого можно получить углеводороды пиролизом. Во многих видах чёрного сланца содержание металлов в несколько раз превышает их содержание в обыкновенных сланцах. Некоторые виды чёрного сланца служат вмещающими породами для сингенетических отложений металлов.

Чёрные сланцы формировались в течение всей истории земли и во всех частях мира. Это указывает на то, что геологические процессы и не геологические условия являются определяющими факторами при формировании чёрных сланцев. Геологические процессы включают отложение, в результате которого накапливаются первичные осадки чёрного сланца, и диагенез, присходящий в результате увеличивающейся глубины захоронения осадков.

Процессы отложения включают целый диапазон отношений между такими факторами как органическая продуктивность, скорость седиментации, интенсивность окисления, разрушающего органическое вещество. Если присутствует достаточное количество органического вещества, чтобы истощить кислород в среде, образуется чёрный сланец.

Диагнетические процессы включают химические реакции, определяемые природой составных частей и режимами давлений и температур, вызванных продолжающимся захоронением. На глубине в несколько метров под поверхностю земли восстанавливается сульфат и могут отложиться сульфидные минералы. На глубине в несколько сотен метров в результате реакций брожения образуется биогенетический метан, а на больших глубинах в результате реакций декарбоксилирования и температурного метаморфизма образуются дополнительные углеводороды. Комплексы вновь образованных минералов характеризуют каждую зону диагенеза.

Resümee

Schwarzschiefer ist ein dunkler Schieferton, der organische Substanz enthält, die durch Überlagerung oder durch Pyrolyse Kohlenwasserstoffe bilden kann. Viele Schwarzschieferschichten zeigen eine Anreicherung an Metallen, sodaß ihre Metallgehalte um einiges höher liegen als die der üblichen Schiefer. Einige Schwarzschieferschichten dienten als Muttergestein für syngenetische Metallablagerungen.

Schwarzschiefer wurden während der ganzen Erdgeschichte und überall auf der Erde gebildet. Daraus folgt, daß geologische Prozesse, nicht geologische Gegebenheiten die ausschlaggebenden Faktoren für die Ablagerung von Schwarzschiefer sind. Diese geologischen Prozesse sind die Ablagerung, durch die das Ausgangsmaterial für den Schwarzschiefer sedimentiert wurde und die Diagenese infolge der zunehmenden Überlagerung.

Ablagerungsprozesse werden durch die Einwirkung mehrerer Faktoren beeinflußt, wie z.B. organische tätigkeit, Absatzgeschwindigkeit klastischer Sedimente, und Intensität der Oxidation, durch die organisches Material zerstört wird. Schwarzschiefer entsteht, wenn genügend organisches Material vorhanden ist, um den Sauerstoff der Umgebung zu verbrauchen.

Diagenetische Prozesse beinhalten chemische Reaktionen, die durch die Art der Komponenten sowie durch die herrschenden Druck- und Temperaturverhältnisse kontrolliert werden, die durch zunehmende Überlagerung entstehen. Denn unter einer Überlagerung von einigen Metern wird Sulfat reduziert, und Sulfidminerale können abgelagert werden. Fermentationsreaktionen in den nächsten hundert Metern führen zur Bildung von biogenem Methan. Ihnen folgen mit zunehmender Tiefe nach und nach Decarboxyli-erungsreaktionen und thermische Alterung, die weitere Kohlenwasserstoffe bilden. Abfolgen von neu gebildeten Mineralen sind charakteristisch für jede der Diagenesezonen.

Résumé

L’argile shisteuse noire est une roche argileuse foncée contenant de la matière organique qui peut avoir généré des hydrocarbones dans le sous-sol ou qui peut donner des hydrocarbones par pyrolyse. Beaucoup d’unités d’argile shisteuse noire sont enrichies de quantités de métaux plusieurs fois plus importantes que celles aux quelles on s’attendrait dans l’argile shisteuse ordinaire. Certaines unités d’argile shisteuse noire ont servi de roches hôtes pour des dépôts de métal syngénétique.

Les argiles shisteuses noires ont été formées tout au long de l’histoire terrestre et dans toutes les parties du monde. Ceci suggère que ce sont des procèdes géologiques et non des lieux géologiques qui sont les facteurs controllants dans l’accumulation de l’argile shisteuse noire. Les procédés géologiques sont: la déposition par laquelle les matières premières d’argile shisteuse sont accumulées et la diagénèse répondant à une profondeur d’enterrement croissante.

Les procédés de déposition comprennent une étendue de relations entre des facteurs tels la productivité organique, la vitesse de sédimentation élastique et l’intensité d’oxidation par laquelle la matière organique est détruite. S’il ya assez de matière organique pour épuiser l’oxygène de l’environnement, il en résulte une argile shisteuse noire.

Les procédés diagénétiques comprennent des réactions chimiques contrôlés par la nature des composants et par les régimes de pression et de température imposés par l’enterrement continuel. A une épaisseur de quelques mètres sous la surface, la sulphate est réduite et des minéraux sulphides peuvent être déposés. Les réactions de fermentation dans les prochaines centaines de mètres résultent en de la méthane biogènique, suivie successivement à de plus grandes profondeurs de réactions -de decarboxylation et de maturation thermale qui forment d’avantage d’hydrocarbones. Des suites de minéraux nouvellement formés sont caractéristiques de chacune des zones de diagénèse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anger, G., Nielsen, H., Puchelt, H., and Ricke, W. (1966) Sulfur isotopes in the Rammelsberg ore deposit (Germany): Econ. Geol. 61, 511–536.

    Article  Google Scholar 

  • Armands, Gösta (1972) Geochemical studies of uranium, molybdenum and vanadium in a Swedish alum shale: Stockholm Contrib. Geol. 27, 148 pp.

  • Arnold, C. A. (1969) The fossil-plant record: in Aspects of palynology, R. H. Tschudy and R. A. Scott, eds., Wiley-Interscience, New York, 127–143.

    Google Scholar 

  • Berner, R. A. (1964) Stability fields of iron minerals in anaerobic marine sediments: J. Geol. 72, 826–834.

    Article  Google Scholar 

  • Boyle, R. W. (1968) Fahlbands, sulfide schists, and ore deposition: Econ. Geol. 63, 835–840.

    Article  Google Scholar 

  • Breger, I. A. and Brown, Andrew (1962) Kerogen in the Chattanooga Shale: Science 137, 221–224.

    Article  Google Scholar 

  • Brookins, D. G. (1976) Shale as a repository for radioactive waste: the evidence from Oklo: Environ. Geol. 1, 255–259.

    Article  Google Scholar 

  • Brown, J. P. (1976) Energy from shale—a little used natural resource: in Natural Gas from Unconventional Sources: Natl. Acad. Sci., Board on Mineral Resources, Comm. on Natural Resources, mtg., Jan. 15, 1976, 86–89.

    Google Scholar 

  • Claypool, G. E. and Kaplan, I. R. (1974) The origin and distribution of methane in marine sediments: in Natural Gases in Marine Sediments, I. R. Kaplan, ed., Plenum, New York, 99–139.

    Chapter  Google Scholar 

  • Clemens, S. L. [Mark Twain] (1874) [1896] Life on the Mississippi: Harper and Bros., New York, 465 pp.

    Google Scholar 

  • Conant, L. C. and Swanson, V. E. (1961) Chattanooga Shale and related rocks of central Tennessee and nearby areas: U.S. Geol. Surv. Prof. Pap. 357, 91 pp.

  • Cox, R. and Curtis, R. (1977) Discovery of the Lady Loretta zinc-lead-silver deposit, northwest Queensland, Australia— a geochemical case history: J. Geochem. Explor. 8, 189–202.

    Article  Google Scholar 

  • Curtis, C. D. (1977) Sedimentary geochemistry: environments and processes dominated by involvement of an aqueous phase: Philos. Trans. Roy. Soc. London A 286, 353–372.

    Article  Google Scholar 

  • Davidson, D. F. and Lakin, H. W. (1961) Metal content of some black shales of the western United States: in Geological Survey Research 1961, Short papers in the geologic and hydrologie sciences: U.S. Geol. Surv. Prof. Pap. 424-C, C329–C331.

    Google Scholar 

  • Davidson, D. F. and Lakin, H. W. (1962) Metal content of some black shales—Pt. 2: in Geological Survey Research 1962, Short papers in the geologic and hydrologie sciences: U.S. Geol. Surv. Prof. Pap. 450-C, C740.

    Google Scholar 

  • Dean, W. E., Gardner, J. V., Jansa, L. F., Cepek, Pavel, and Seibold, Eugen (1977) Cyclic sedimentation along the continental margin of northwest Africa: in Initial Reports of Deep Sea Drilling Project 41, Yves Lancelot and Eugen Seibold, eds., U.S. Gov. Printing Office, Washington, 965–989.

    Google Scholar 

  • Didyk, B. M., Simoneit, B. R. T., Brasseil, S. C., and Eglinton, Geoffrey (1978) Organic geochemical indicators of pa-leoenvironmental conditions of sedimentation: Nature 211, 216–222.

    Google Scholar 

  • Ensign, C. O., Jr., White, W. S., Wright, J. C., Patrick, J. L., Leone, R. J., Hathaway, D. J., Tramell, J. W., Fritts, J. J., and Wright, T. L. (1968) Copper deposits in the Nonesuch Shale, White Pine, Michigan: in Ore Deposits of the United States, 1933–1967, Graton-Sales Volume 1, Amer. Inst. Min. Metall. Pet. Eng., New York, 460–488.

    Google Scholar 

  • Fulton, L. J. P. (1977) Stratigraphy and sedimentology of radioactive Devonian-Mississippian shales of the central Appalachian Basin: Ph.D. thesis, University of Cincinnati, 128 pp.

    Google Scholar 

  • Gammon, J. B. (1966) Fahlbands in the Proterozoic of southern Norway: Econ. Geol. 61, 174–188.

    Article  Google Scholar 

  • Gardner, J. V., Dean, W. E., and Jansa, L. F. (1977) Sediments recovered from the northwest African continental margin, Leg 41, Deep sea drilling project: in Initial Reports of Deep Sea Drilling Project 41, Yves Lancelot and Eugen Seibold, eds., U.S. Gov. Printing Office, Washington, 1121–1134.

    Google Scholar 

  • Goldhaber, M. B. (1978) Euxinic facies: in The Encyclopedia of Sedimentology: Rhodes Fairbridge and Joanne Burgeois, eds., Dowden, Hutchinson, and Ross, Inc., Stroudsburg, Pennsylvania, 296–300.

    Google Scholar 

  • Goldhaber, M. B. and Kaplan, I. R. (1974) The sulfur cycle: in The Sea 5-Marine Chemistry, the Sedimentary Cycle, E. D. Goldberg, ed., John Wiley, New York, 569–655.

    Google Scholar 

  • Gulson, B. L. (1977) Application of lead isotopes and trace elements to mapping black shales around a base metal sulfide deposit: J. Geochem. Explor. 8, 85–103.

    Article  Google Scholar 

  • Hallam, Anthony (1977) Anoxic events in the Cretaceous ocean: Nature 268, 15–16.

    Article  Google Scholar 

  • Harris, A. G., Harris, L.G., and Epstein, J. B. (1978) Oil and gas data from Paleozoic rocks in the Appalachian Basin: maps for assessing hydrocarbon potential and thermal maturity (conodont color alteration isograds and overburden isopachs): U.S. Geol. Surv. Map I-917-E.

    Google Scholar 

  • Irwin, Hilary, Curtis, C. D., and Coleman, Max (1977) Isotopie evidence for sources of diagenetic carbonates formed during burial of organic-rich sediments: Nature 269, 209–213.

    Article  Google Scholar 

  • Jewett, J. M., Emery, P. A., and Hatcher, D. A. (1965) The Pleasanton Group (Upper Pennsylvanian) in Kansas: Kansas Geol. Surv. Bull. 175, pt. 4, 1–11.

    Google Scholar 

  • Kerr, R. A. (1978) Glomar Explorer: New era in deep-sea drilling: Science 200, 1254–1255.

    Article  Google Scholar 

  • Krauskopf, K. B. (1955) Sedimentary deposits of rare metals: in Economic Geology (50th Anniversary Volume, 1905–1955), A. M. Bateman, ed. Econ. Geol. 411–463.

    Google Scholar 

  • Krumbein, W. C. (1942) Physical and chemical changes in sediments after deposition: J. Sediment. Petrology 12, 111–117.

    Article  Google Scholar 

  • Krumbein, W. C. and Garrels, R. M. (1952) Origin and classification of chemical sediments in terms of pH and oxidation-reduction potentials: J. Geol. 60, 1–33.

    Article  Google Scholar 

  • Peltola, Esko (1968) On some geochemical features in the black schists of the Outokumpu area, Finland: Geol. Soc. Finland Bull. 40, 39–50.

    Article  Google Scholar 

  • Rice, D. D. (1975) Origin of and conditions for shallow accumulations of natural gas: Wyoming Geol. Assoc, 27th Ann. Field Conf. 1975, Guidebook, 267–271.

    Google Scholar 

  • Schott, G. L., Overbey, W. K., Jr., Hunt, A. E., and Komar, C. A., eds. (1978) First eastern gas shales symposium, October 17–19, 1977, Morgantown, West Virginia}: U.S. Dep. Energy, Morgantown Energy Res. Center, MERC/SP-77/5, 783 pp.

    Google Scholar 

  • Swanson, V. E. (1961) Geology and geochemistry of uranium in marine black shales—a review: U.S. Geol. Surv. Prof. Pap. 356-C, 67–112.

    Google Scholar 

  • Tourtelot, E. B. (1970) Selected annotated bibliography of minor-element content of marine black shales and related sedimentary rocks, 1930–65: U.S. Geol. Surv. Bull. 1293, 118 pp.

  • Tourtelot, E. B. and Vine, J. D. (1976) Copper deposits in sedimentary and volcanogenic rocks: U.S. Geol. Surv. Prof. Pap. 907-C, 34 pp.

  • Tourtelot, H. A. (1964) Minor-element composition and organic carbon content of marine and nonmarine shales of Late Cretaceous age in the western interior of the United States: Geochim. Cosmochim. Acta 28, 1579–1604.

    Article  Google Scholar 

  • U.S. Dept. Energy (1977) National gas survey: Supply-technical Advisory Task Force on Non-conventional Natural Gas Resources, J. W. Harbaugh, Chairman, Federal Energy Regulatory Commission (DOE/FERC-0010, UC-13), 108 pp.

    Google Scholar 

  • Vine, J. D. (1966) Element distribution in some shelf and géosynclinal black shales: U.S. Geol. Surv. Bull. 1214E, 31 pp.

  • Vine, J. D. and Tourtelot, E.B. (1970) Geochemistry of black shale deposits—a summary report: Econ. Geol. 65, 253–272.

    Article  Google Scholar 

  • Wedepohl, K. H., Delevaux, M. H., and Doe, B. R. (1978) The potential source of lead in the Permian Kupferschiefer bed of Europe and some selected Paleozoic mineral deposits in the Federal Republic of Germany: Contrib. Mineral. Petrol. 65, 273–281.

    Article  Google Scholar 

  • White, S. M. (1979) Deep-sea drilling: Geotimes 24, 21–23.

    Google Scholar 

  • Woodring, W. P. (1954) Conference on biochemistry, paleo-ecology, and evolution: Natl. Acad. Sci. 40, 219–224.

    Article  Google Scholar 

  • Zangerl, Rainer and Richardson, E. S. (1963) The paleoeco-logical history of two Pennsylvanian black shales: Fieldiana, Geol. Mem. 4, 352 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Invited paper at 1978 Clay Minerals Conference, Bloomington, Indiana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tourtelot, H.A. Black Shale—Its Deposition and Diagenesis. Clays Clay Miner. 27, 313–321 (1979). https://doi.org/10.1346/CCMN.1979.0270501

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1979.0270501

Key Words

Navigation