Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T22:39:17.869Z Has data issue: false hasContentIssue false

Vibrational Probe Studies of Water Interactions with Montmorillonite

Published online by Cambridge University Press:  28 February 2024

C. T. Johnston
Affiliation:
Department of Soil and Water Science, University of Florida, Gainesville, Florida 32611
G. Sposito
Affiliation:
Department of Soil Science, University of California, Berkeley, California 94720
C. Erickson
Affiliation:
Department of Soil and Water Science, University of Florida, Gainesville, Florida 32611

Abstract

Interaction of water with montmorillonite exchanged with Na+, K+, Co2+, and Cu2+ cations as a function of water content was examined using an FTIR/gravimetric cell designed to collect spectroscopic and sorption data simultaneously. Correlation of water desorption isotherms with infrared spectra of the clay-water complex showed that the position of the HOH bending band of water decreased as a function of water content. The largest decreases in frequency were observed for Cu2+ and Co2+; smaller decreases were found for Na+ and K+. In addition, the molar absorptivity of sorbed water increased upon decreasing the water content. The decrease in frequency and the concomitant increase in molar absorptivity were attributed to polarization effects on the sorbed water molecules by exchangeable cations. The interference fringes of a self supporting clay film permitted d-spacings to be determined optically and, therefore, changes in frequency, molar absorptivity, and water sorption behavior to be related directly to changes in interlayer spacing. The d-spacings obtained from the interference fringes were consistently larger by approximately 0.5 Å than those determined using powder XRD.

Type
Research Article
Copyright
Copyright © 1992, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bank, S., Bank, J. F. and Ellis, P. D., 1989 Solid-state 113Cd nuclear magnetic resonance study of exchanged mont-morillonites J. Phys. Chem. 93 48474855 10.1021/j100349a034.CrossRefGoogle Scholar
Bidadi, H., Schroeder, P. A. and Pinnavaia, T. J., 1988 Dielectric properties of montmorillonite clay films: Effects of water and layer charge reduction J. Phys. Chem. Solids 49 14351440 10.1016/0022-3697(88)90117-5.CrossRefGoogle Scholar
Brown, Z. Z. and Kevan, Z. Z., 1988 Aqueous coordination and location of Cu2 cations in montmorillonite clay studied by electron spin resonance and electron spin-echo modulation J. Am. Chem. Soc. 110 27432748 10.1021/ja00217a008.CrossRefGoogle Scholar
Clementz, D. M., Mortland, M. M. and Pinnavaia, T. J., 1974 Properties of reduced charge montmorillonites: Hydrated Cu(II) ions as a spectroscopic probe Clays & Clay Minerals 22 4957 10.1346/CCMN.1974.0220108.CrossRefGoogle Scholar
Clementz, D. M., Pinnavaia, T. J. and Mortland, M. M., 1973 Stereochemistry of hydrated copper(II) ions on the interlamellar surfaces of layer silicates. An electron spin resonance study J. Phys. Chem. 77 196200 10.1021/j100621a010.CrossRefGoogle Scholar
Delville, A., Grandjean, J. and Laszlo, P., 1991 Order acquisition by clay platelets in a magnetic field. NMR study of the structure and microdynamics of the adsorbed water layer J. Phys. Chem. 95 13831392 10.1021/j100156a065.CrossRefGoogle Scholar
Farmer, V. C., Greenland, D. J. and Hayes, M. H. B., 1978 Water on particle surfaces Chemistry of Soil Constituents New York Wiley.Google Scholar
Fripiat, J. J., Jelli, A., Poncelet, G. and Andre, J., 1965 Thermodynamic properties of adsorbed water molecules and electrical conduction in montmorillonites and silicas J. Phys. Chem. 69 21852197 10.1021/j100891a007.CrossRefGoogle Scholar
Fu, M. H., Zhang, Z. Z. and Low, P. F., 1990 Changes in the properties of a montmorillonite-water system during the adsorption and desorption of water: Hysteresis Clays & Clay Minerals 38 485492 10.1346/CCMN.1990.0380504.CrossRefGoogle Scholar
Grandjean, J. and Laszlo, P., 1989 Multinuclear and pulsed gradient magnetic resonance studies of Na cations and of water reorientation at the interface of a clay J. Mag. Res. 83 128137.Google Scholar
Griffiths, P. R. and deHaseth, J. A., 1986 Fourier Transform Infrared Spectrometry New York John Wiley & Sons.Google Scholar
Hall, P. L. and Astill, D. M., 1989 Adsorption of water by homoionic exchange forms of Wyoming montmorillonite (SWy-1) Clays & Clay Minerals 37 355363 10.1346/CCMN.1989.0370409.CrossRefGoogle Scholar
Johnston, C. T. and Perry, D. L., 1990 Fourier transform infrared and Raman spectroscopy Instrumental Surface Analysis of Geologic Materials New York VCH.Google Scholar
Johnston, C. T., Tipton, T., Stone, D. A., Erickson, C. and Trabue, S. L., 1991 Chemisorption of p-dimethoxybenzene on Cu-montmorillonite Langmuir 7 289296 10.1021/la00050a015.CrossRefGoogle Scholar
Johnston, C. T., Tipton, T., Trabue, S. L., Erickson, C. and Stone, D. A., 1992 Vapor phase sorption of p-xylene on Co and Cu exchanged SAz-1 montmorillonite Environ. Sci. Technol. 26 382390 10.1021/es00026a021.CrossRefGoogle Scholar
Kogelbauer, A., Lercher, J. A., Steinberg, K. H., Roessner, F., Soellner, A. and Dmitriev, R. V., 1989 Type, stability, and acidity of hydroxyl groups of HNaK-erionites Zeolites 9 224230 10.1016/0144-2449(89)90030-4.CrossRefGoogle Scholar
Laird, D. A., Scott, A. D. and Fenton, T. E., 1989 Evaluation of the alkylammonium method of determining layer charge Clays & Clay Minerals 37 4146 10.1346/CCMN.1989.0370105.CrossRefGoogle Scholar
Laperche, V., Lambert, J. F., Prost, R. and Fripiat, J. J., 1990 High-resolution solid-state NMR of exchangeable cations in the interlayer surface of a swelling mica: 23Na, 111Cd, and 133Cs vermiculites J. Phys. Chem. 94 88218831 10.1021/j100388a015.CrossRefGoogle Scholar
McBride, M. B., 1982 Hydrolysis and dehydration reactions of exchangeable Cu2 on hectorite Clays & Clay Minerals 30 3 200206 10.1346/CCMN.1982.0300306.CrossRefGoogle Scholar
McBride, M. B. and Mortland, M. M., 1974 Copper(II) interactions with montmorillonite: Evidence from physical methods Soil Sci. Soc. Am. Proc. 38 408415 10.2136/sssaj1974.03615995003800030014x.CrossRefGoogle Scholar
McBride, M. B., Pinnavaia, T. J. and Mortland, M. M., 1975 Electron spin resonance studies of cation orientation in restricted water layers on phyllosilicate (smectite) surfaces J. Phys. Chem. 79 24302435 10.1021/j100589a018.CrossRefGoogle Scholar
Mehmel, M., 1937 Beitrage zur frage des wasserhaltes der minerale kaolinit, halloysit und montmorillonit Chem. Erde. 11 116.Google Scholar
Mooney, R. W., Keenan, A. G. and Wood, L. A., 1952 Adsorption of water vapor by montmorillonite. II. Effect of exchangeable ions and lattice swelling as measured by X-ray diffraction J. Am. Chem. Soc. 74 13711374 10.1021/ja01126a002.CrossRefGoogle Scholar
Mooney, R. W., Keenan, A. G. and Wood, L. A., 1952 Adsorption of water vapor by montmorillonite. I. Heat of desorption and application of BET theory J. Am. Chem. Soc. 74 13671374 10.1021/ja01126a001.CrossRefGoogle Scholar
Mortland, M. M. and Raman, K. V., 1968 Surface acidities of smectites in relation to hydration, exchangeable-cation and structure Clays & Clay Minerals 16 393398 10.1346/CCMN.1968.0160508.CrossRefGoogle Scholar
Mulla, D. J. and Low, P. F., 1983 The molar-absorptivity of interparticle water in clay-water systems J. Colloid Interface Sci. 95 5160 10.1016/0021-9797(83)90071-1.CrossRefGoogle Scholar
Ormerod, E. C. and Newman, A. C. D., 1983 Water sorption on Ca-saturated clays: II. Internal and external surfaces of montmorillonite Clay Miner. 18 289299 10.1180/claymin.1983.018.3.06.CrossRefGoogle Scholar
Poinsignon, C., Cases, J. M. and Fripiat, J. J., 1978 Electrical-polarization of water molecules adsorbed by smectites. An infrared study J. Phys. Chem. 82 18551860 10.1021/j100505a016.CrossRefGoogle Scholar
Prost, R., 1975 Interactions between adsorbed water molecules and the structure of clay minerals: Hydration mechanism of smectites Proc. Int. Clay Conf. Mexico City Clay Minerals Society 351359.Google Scholar
Russell, J. D. and Farmer, V. C., 1964 Infra-red spectroscopic study of the dehydration of montmorillonite and saponite Clay Min. Bull. 5 443464 10.1180/claymin.1964.005.32.04.CrossRefGoogle Scholar
Sposito, G. and Prost, R., 1982 Structure of water adsorbed on smectites Chem. Rev. 82 553573 10.1021/cr00052a001.CrossRefGoogle Scholar
Sposito, G., Prost, R. and Gaultier, J. P., 1983 Infrared spectroscopic study of adsorbed water on reduced-charge Na/Li montmorillonites Clays & Clay Minerals 31 916 10.1346/CCMN.1983.0310102.CrossRefGoogle Scholar
Tinet, D., Faugere, A. M. and Prost, R., 1992 113Cd NMR chemical shift tensor analysis of cadmium exchanged clays and clay gel J. Phys. Chem. .CrossRefGoogle Scholar
Trillo, J. M., Poyato, J., Tobias, M. M. and Castro, M. A., 1990 Sorption of water vapor by M-montmorillonite (M = sodium, lithium, lanthanum) Clay Miner. 25 485498 10.1180/claymin.1990.025.4.07.CrossRefGoogle Scholar
Van Olphen, H. and Fripiat, J. J., 1979 Data Handbook for Clay Materials and Other Non-metallic Minerals Oxford Pergamon Press.Google Scholar
Voudrias, E. A., Reinhard, M., Davis, J. and Hayes, K. F., 1986 Abiotic organic reactions at mineral surfaces Geochemical Processes at Mineral Surfaces. ACS Symposium Series, Vol. 323 Washington American Chemical Society.Google Scholar
Weiss, C. A., Kirkpatrick, R. J. and Altaner, S. P., 1990 The structural environments of cations adsorbed onto clays: Cesium-133 variable temperature MAS NMR spectroscopy ofhectorite Geochim. Cosmochim. Acta 54 16551669 10.1016/0016-7037(90)90398-5.CrossRefGoogle Scholar
Weiss, C. A., Kirkpatrick, R. J. and Altaner, S. P., 1990 Variations in interlayer cation sites of clay minerals as studied by 133Cs MAS nuclear magnetic resonance spectroscopy Amer. Miner. 75 970982.Google Scholar