Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T22:36:31.461Z Has data issue: false hasContentIssue false

Kaolinite/Montmorillonite Resembles Beidellite

Published online by Cambridge University Press:  28 February 2024

J. Cuadros
Affiliation:
U.E.I. Fisicoquímica y Geoquimica Mineral, Estación Experimental del Zooidín (C.S.I.C.), Profesor Albareda 1, 18008 Granada, Spain
A. Delgado
Affiliation:
U.E.I. Fisicoquímica y Geoquimica Mineral, Estación Experimental del Zooidín (C.S.I.C.), Profesor Albareda 1, 18008 Granada, Spain
A. Cardenete
Affiliation:
Departamento de Química Física, Facultad de Ciencias, Universidad de Granada, Campus Universitario de Fuentenueva, 18001 Granada, Spain
E. Reyes
Affiliation:
U.E.I. Fisicoquímica y Geoquimica Mineral, Estación Experimental del Zooidín (C.S.I.C.), Profesor Albareda 1, 18008 Granada, Spain
J. Linares
Affiliation:
U.E.I. Fisicoquímica y Geoquimica Mineral, Estación Experimental del Zooidín (C.S.I.C.), Profesor Albareda 1, 18008 Granada, Spain

Abstract

A number of smectitic samples from Almeria (SE Spain) were studied by chemical analysis, DTA, TG, XRD (oriented aggregates with ethylene glycol treatment and Greene-Kelly test), FTIR and MAS NMR. Chemically they resembled a beidellite-montmorillonite series, displaying DTA/TG characteristics already quoted in the literature in beidellite descriptions. They did not swell after the Greene-Kelly test, as it has also been reported for some beidellites. Nevertheless XRD of the oriented, glycolated samples, FTIR, MAS NMR and revision of the chemical analysis demonstrated that they were mixed-layered kaolinite/montmorillonite. It is possible that some of the reported beidellites in the literature are kaolinite/montmorillonite. Beidellite characterization must be supported by several different techniques.

Type
Research Article
Copyright
Copyright © 1994, Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Borchardt, G. A., (1977) Montmorillonite and other smectite minerals: in Minerals in Soil Environments, Dixon, J. B., and Weed, S. B., eds., Soil Sci. Soc. Amer., Madison, Wisconsin, 293330.Google Scholar
Brindley, G. W., and Lemaitre, J., (1987) Thermal oxidation and reduction reactions of clay minerals: in Chemistry of Clays and Clay Minerals, Newman, A. C. D., ed., Longman Scientific and Technical (Essex), Mineralogical Society, London, 319370.Google Scholar
Bystrom-Brusewitz, A. M., (1975) Studies of the Li-test to distinguish beidellite and montmorillonite: in Proceedings of the International Clay Conference, 1975, Applied Publishing Ltd., Wilmette, Illinois, 419428.Google Scholar
Farmer, V. C., (1974) The layer silicates: in The Infrared Spectra of Minerals, Farmer, V. C., ed., Mineralogical Society, London, 331364.CrossRefGoogle Scholar
Greene-Kelly, R., (1952) A test for montmorillonite: Nature, 170: 1130.CrossRefGoogle Scholar
Güven, N., (1991) Smectites: in Hydrous Phyllosilicates, Bailey, S. W., ed., Reviews in Mineralogy, Vol. 19, Chelsea, 497560.Google Scholar
Mackenzie, R. C., (1970) Simple phyllosilicates based on gibbsite- and brucite-like sheets: in Differential Thermal Analysis, Vol. 1, Mackenzie, R. C., ed., Academic Press, New York, 504511.Google Scholar
Malla, P. B., and Douglas, L. A., (1987) Layer charge properties of smectites and vermiculites: Tetrahedral vs. octahedral: Soil Sci. Soc. Amer. J., 51: 13621366.CrossRefGoogle Scholar
Marshall, C. E., (1949) The structural interpretation of chemical analyses of the clay minerals: in The Colloid Chemistry of the Silicate Minerals, Academic Press, New York, 5666.Google Scholar
Moore, D. M., and Reynolds, R. C. Jr. 1989() X-Ray Diffraction and the Identification and Analysis of Clay Minerals: Oxford University Press, Oxford, New York.Google Scholar
Newman, A. C. D., and Brown, G., (1987) The chemical constitution of clays: in Chemistry of Clays and Clay Minerals, Newman, A. C. D., ed., Longman Scientific and Technical (Essex), Mineralogical Society, London, 1128.Google Scholar
Paterson, E., and Swaffield, R., (1987) Thermal analysis: in A Handbook of Determinative Methods in Clay Mineralogy, Wilson, M. J., ed., Chapman and Hall, New York, 99132.Google Scholar
Reyes, E., Huertas, F., and Linares, J., (1978) [Génesis y geoquímica de las esmectitas de Andalucía (España)]. Genesis and geochemistry of the smectites of Andalucía (Spain): Proceedings of 1st International Congress on Bentonites, Sassari-Calgari, 1978, 149176.Google Scholar
Russel, J. D., (1987) Infrared methods: in A Handbook of Determinative Methods in Clay Mineralogy, Wilson, M. J., ed., Chapman and Hall, New York, 133173.Google Scholar
Schultz, L. G., (1969) Lithium and potassium absorption, dehydroxylation temperature, and structural water content of aluminous smectites: Clays and Clay Minerals, 17: 115149.CrossRefGoogle Scholar
SCIFAX DTA Data Index (1962) Compiled by R. C. Mackenzie, Cleaver-Hume Press, London.Google Scholar
Soil Conservation Service (1972) Soil Survey Laboratory Methods and Procedure for Collecting Soil Samples, U.S.D.A., Washington, D.C., Method 5A6.Google Scholar
Wilson, M. J., (1987) X-ray powder diffraction methods: in A Handbook of Determinative Methods in Clay Mineralogy, Wilson, M. J., ed., Blackie, London, 2698.Google Scholar