Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T09:23:10.869Z Has data issue: false hasContentIssue false

Use and Limitations of Second-Derivative Diffuse Reflectance Spectroscopy in the Visible to Near-Infrared Range to Identify and Quantify Fe Oxide Minerals in Soils

Published online by Cambridge University Press:  28 February 2024

A. C. Scheinost*
Affiliation:
Agronomy Department, Purdue University, West Lafayette, Indiana 47907, USA
A. Chavernas
Affiliation:
Departamento de Ciencias y Recursos Agrícolas y Forestales, Universidad de Córdoba, Apdo. 3048, 14080 Córdoba, Spain
V. Barrón
Affiliation:
Departamento de Ciencias y Recursos Agrícolas y Forestales, Universidad de Córdoba, Apdo. 3048, 14080 Córdoba, Spain
J. Torrent
Affiliation:
Departamento de Ciencias y Recursos Agrícolas y Forestales, Universidad de Córdoba, Apdo. 3048, 14080 Córdoba, Spain
*
Present address: Department of Plant and Soil Science, University of Delaware, Newark, Delaware 19717-1303 USA.

Abstract

We measured the visible to near-infrared (IR) spectra of 176 synthetic and natural samples of Fe oxides, oxyhydroxides and an oxyhydroxysulfate (here collectively called “Fe oxides”), and of 56 soil samples ranging widely in goethite/hematite and goethite/lepidocrocite ratios. The positions of the second-derivative minima, corresponding to crystal-field bands, varied substantially within each group of the Fe oxide minerals. Because of overlapping band positions, goethite, maghemite and schwertmannite could not be discriminated. Using the positions of the 4T16A1, 4T26A1, (4E;4A1)←6A1 and the electron pair transition (4T1+4T1)←(6A1+6A1), at least 80% of the pure akaganeite, feroxyhite, ferrihydrite, hematite and lepidocrocite samples could be correctly classified by discriminant functions. In soils containing mixtures of Fe oxides, however, only hematite and magnetite could be unequivocally discriminated from other Fe oxides. The characteristic features of hematite are the lower wavelengths of the 4T1 transition (848–906 nm) and the higher wavelengths of the electron pair transition (521–565 nm) as compared to the other Fe oxides (909–1022 nm and 479–499 nm, resp.). Magnetite could be identified by a unique band at 1500 nm due to Fe(II) to Fe(III) intervalence charge transfer. As the bands of goethite and hematite are well separated, the goethite/hematite ratio of soils not containing other Fe oxides could be reasonably predicted from the amplitude of the second-derivative bands. The detection limit of these 2 minerals in soils was below 5 g kg−1, which is about 1 order of magnitude lower than the detection limit for routine X-ray diffraction (XRD) analysis. This low detection limit, and the little time and effort involved in the measurements, make second-derivative diffuse reflectance spectroscopy a practical means of routinely determining goethite and hematite contents in soils. The identification of other accessory Fe oxide minerals in soils is, however, very restricted.

Type
Research Article
Copyright
Copyright © 1998, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrón, V. and Torrent, J., 1986 Use of the Kubelka-Munk theory to study the influence of iron oxides on soil colour J Soil Sci 37 499510 10.1111/j.1365-2389.1986.tb00382.x.CrossRefGoogle Scholar
Bigham, J.M. Schwertmann, U. Carlson, L. and Murad, E., 1990 A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(II) in acid mine waters Geochim Cosmochim Acta 54 27432758 10.1016/0016-7037(90)90009-A.CrossRefGoogle Scholar
Bigham, J.M. Schwertmann, U. and Pfab, G., 1996 Influence of pH on mineral speciation in a bioreactor simulating acid mine drainage Appl Geochem 11 845852 10.1016/S0883-2927(96)00052-2.CrossRefGoogle Scholar
Bishop, J.L. Murad, E., Dyar, M.D. McCammon, C. and Schaefer, M.W., 1996 Schwertmannite on Mars? Spectroscopic analyses of schwertmannite, its relationship to other ferric minerals, and its possible presence in the surface material on Mars Mineral spectroscopy: A tribute to Roger G. Bums. Spec Publ: Geochem Soc .Google Scholar
Bishop, J.L. Pieters, C.M. Burns, R.G. Edwards, J.O. Mancinelli, R.L. and Froeschl, H., 1995 Reflectance spectroscopy of ferric sulfate-bearing montmorillonites as Mars soil analog materials Icarus 117 101119 10.1006/icar.1995.1145.CrossRefGoogle ScholarPubMed
Burns, R.G., 1981 Intervalence transitions in mixed-valence minerals of iron and titanium Ann Rev Earth Planet Sci 9 345383 10.1146/annurev.ea.09.050181.002021.CrossRefGoogle Scholar
Burns, R.G., 1993 Mineralogical applications of crystal field theory. Cambridge topics in mineral physics and chemistry 10.1017/CBO9780511524899.CrossRefGoogle Scholar
Carlson, L. and Schwertmann, U., 1980 Natural occurrence of feroxyhite (δ-FeOOH) Clays Clay Miner 28 272280 10.1346/CCMN.1980.0280405.CrossRefGoogle Scholar
Carlson, L. and Schwertmann, U., 1981 Natural ferrihydrites in surface deposits from Finland and their association with silica Geochim Cosmochim Acta 45 421429 10.1016/0016-7037(81)90250-7.CrossRefGoogle Scholar
Carlson, L. and Schwertmann, U., 1987 Iron and manganese oxides in Finnish ground water treatment plants Wat Res 21 165170 10.1016/0043-1354(87)90045-5.CrossRefGoogle Scholar
Carlson, L. and Schwertmann, U., 1990 The effect of CO2 and oxidation rate on the formation of goethite versus lepidocrocite from an Fe(II) system at pH 6 and 7 Clay Miner 25 6571 10.1180/claymin.1990.025.1.07.CrossRefGoogle Scholar
CIE., 1978 Recommendations on uniform color spaces, color difference and psychometric color terms Paris CIE.Google Scholar
Cornell, R.M. and Schwertmann, U., 1996 The iron oxides: Structure, properties, reactions, occurrence and uses Weinheim VCH Verlagsgesellschaft.Google Scholar
Coyne, L.M. Bishop, J.L. Scattergood, T. Banin, A. Carle, G. Orenberg, J., Coyne, L.M. McKeever, W.S. and Blake, D.F., 1990 Near-infrared correlation spectroscopy: Quantifying iron and surface water in a series of variably cation-exchanged montmorillonite clays Spectroscopic characterization of minerals and their surfaces 407429 10.1021/bk-1990-0415.ch021.CrossRefGoogle Scholar
Deaton, B.C. and Balsam, W.L., 1991 Visible spectroscopy. A rapid method for determining hematite and goethite concentration in geological materials J Sediment Petrol 61 628632 10.1306/D4267794-2B26-11D7-8648000102C1865D.CrossRefGoogle Scholar
Fernández, R.N. and Schulze, D.G., 1992 Munsell colors of soils simulated by mixtures of goethite and hematite with kaolinite Z Pflanzenemahr Bodenk 155 473478 10.1002/jpln.19921550520.CrossRefGoogle Scholar
Huguenin, R.L. and Jones, J.L., 1986 Intelligent information extraction from reflectance spectra: Absorption band positions J Geophys Res 91 95859598 10.1029/JB091iB09p09585.CrossRefGoogle Scholar
Kortüm, G., 1969 Reflectance spectroscopy New York Springer-Verlag 10.1007/978-3-642-88071-1.CrossRefGoogle Scholar
Kosmas, C.S. Curi, N. Bryant, R.B. and Franzmeier, D.R., 1984 Characterization of iron oxide minerals by second-derivative visible spectroscopy Soil Sci Soc Am J 48 401405 10.2136/sssaj1984.03615995004800020036x.CrossRefGoogle Scholar
Kosmas, C.S. Franzmeier, D.P. and Schulze, D.G., 1986 Relationship among derivative spectroscopy, color, crystallite dimensions, and Al substitution of synthetic goethites and hematites Clays Clay Miner 34 625634 10.1346/CCMN.1986.0340602.CrossRefGoogle Scholar
Malengreau, N. Bedidi, A. Muller, J.-P. and Herbillon, A.J., 1996 Spectroscopic control of iron oxide dissolution in two ferralitic soils Eur J Soil Sci 47 1320 10.1111/j.1365-2389.1996.tb01367.x.CrossRefGoogle Scholar
Malengreau, N. Muller, J.-P. and Calas, G., 1994 Fe-speciation in kaolins: A diffuse reflectance study Clays Clay Miner 42 137147 10.1346/CCMN.1994.0420204.CrossRefGoogle Scholar
Mehra, O.P. and Jackson, M.L., 1960 Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate Clays Clay Miner 7 317327 10.1346/CCMN.1958.0070122.CrossRefGoogle Scholar
Morris, R.V. Agresti, D.G. Lauer, H.V. Newcomb, J.A. Shelfer, T.D. and Murali, A.V., 1989 Evidence for pigmentary hematite on Mars based on optical, magnetic, and Mossbauer studies of superparamagnetic (nanocrystalline) hematite J Geophys Res 94 27602778 10.1029/JB094iB03p02760.CrossRefGoogle Scholar
Morris, R.V. Neely, S.C. and Mendell, W.W., 1982 Application of Kubelka-Munk theory of diffuse reflectance to geologic problems: The role of scattering Geophys Res Lett 9 113116 10.1029/GL009i002p00113.CrossRefGoogle Scholar
Murad, E. and Schwertmann, U., 1984 The influence of crystallinity on the Mossbauer spectrum of lepidocrocite Mineral Mag 48 507511 10.1180/minmag.1984.048.349.04.CrossRefGoogle Scholar
Murad, E. and Schwertmann, U., 1986 Influence of Al substitution and crystal size on the room-temperature Mossbauer spectrum of hematite Clays Clay Miner 34 16 10.1346/CCMN.1986.0340101.CrossRefGoogle Scholar
Nagano, T. Nakashima, S. Nakayama, S. Osada, K. and Senoo, M., 1992 Color variations associated with rapid formation of goethite from proto-ferrihydrite at pH 13 and 40° C Clays Clay Miner 40 600607 10.1346/CCMN.1992.0400515.CrossRefGoogle Scholar
Nagano, T. Nakashima, S. Nakayama, S. and Senoo, M., 1994 The use of color to quantify the effects of pH and temperature on the crystallization kinetics of goethite under highly alkaline conditions Clays Clay Miner 42 226234 10.1346/CCMN.1994.0420213.CrossRefGoogle Scholar
Press, W.H. Teukolsky, S.A. Vetterling, W.T. and Flannery, B.P., 1992 Numerical recipes in Fortran. The art of scientific computing .Google Scholar
Schulze, D.G., 1981 Identification of soil iron oxide minerals by differential X-ray diffraction Soil Sci Soc Am J 45 437440 10.2136/sssaj1981.03615995004500020040x.CrossRefGoogle Scholar
Schulze, D.G. and Schwertmann, U., 1984 The influence of aluminium on iron oxides: X. Properties of Al-substituted goethites Clay Miner 19 521529 10.1180/claymin.1984.019.4.02.CrossRefGoogle Scholar
Schwertmann, U., 1964 Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung Zeitschrift für Pflanzenemähr Dögung and Bodenkunde 105 194202 10.1002/jpln.3591050303.CrossRefGoogle Scholar
Schwertmann, U. Bigham, J.M. and Murad, E., 1995 The first occurence of Schwertmannite in a natural stream environment Eur J Mineral 7 547552 10.1127/ejm/7/3/0547.CrossRefGoogle Scholar
Schwertmann, U. Cambier, P. and Murad, E., 1985 Properties of goethites of varying crystallinity Clays Clay Miner 33 369378 10.1346/CCMN.1985.0330501.CrossRefGoogle Scholar
Schwertmann, U. and Fischer, W.R., 1973 Natural “amorphous” ferric hydroxide Geoderma 10 237247 10.1016/0016-7061(73)90066-9.CrossRefGoogle Scholar
Schwertmann, U. and Fitzpatrick, R.W., 1977 Occurrence of lepidocrocite and its association with goethite in Natal soils Soil Sci Soc Am J 41 10131018 10.2136/sssaj1977.03615995004100050042x.CrossRefGoogle Scholar
Schwertmann, U. and Kämpf, N., 1983 Oxidos de ferro jovens em ambientes pedogeneticos brasileiros R bras Ci Solo 7 251255.Google Scholar
Schwertmann, U. and Murad, E., 1990 The influence of aluminum on iron oxides: XIV. Al-substituted magnetite synthesized at ambient temperatures Clays Clay Miner 38 196202 10.1346/CCMN.1990.0380211.CrossRefGoogle Scholar
Schwertmann, U. Schulze, D.G. and Murad, E., 1982 Identification of ferrihydrite in soils by dissolution kinetics, differential X-ray diffraction, and Moessbauer spectroscopy Soil Science Soc Am J 46 869875 10.2136/sssaj1982.03615995004600040040x.CrossRefGoogle Scholar
Schwertmann, U. and Wolska, E., 1990 The influence of aluminum on iron oxides: XV. Al-for-Fe substitution in synthetic lepidocrocite Clays Clay Miner 38 209212 10.1346/CCMN.1990.0380213.CrossRefGoogle Scholar
Sherman, D.M., 1987 Molecular orbital (SCF-Xa-SW) theory of metal-metal charge transfer processes in minerals: I. Application to Fe2+ → Fe3+ charge transfer and “electron delocalization” in mixed-valence iron oxides and silicates Phys Chem Miner 14 355363 10.1007/BF00309810.CrossRefGoogle Scholar
Sherman, D.M. and Waite, T.D., 1985 Electronic spectra of Fe3+ oxides and oxide hydroxides in the near IR to near UV Am Mineral 70 12621269.Google Scholar
Singer, R.B., 1982 Spectral evidence for the mineralogy of high-albedo soils and dust on Mars J Geophys Res 87 1015910168 10.1029/JB087iB12p10159.CrossRefGoogle Scholar
Stanjek, H., 1991 Aluminium- und Hydroxylsubstitution in synthetischen und natürlichen Hämatiten .Google Scholar
Stanjek, H. and Schwertmann, U., 1992 The influence of aluminum on iron oxides. Part XVI: Hydroxyl and aluminum substitution in synthetic hematites Clays Clay Miner 40 347354 10.1346/CCMN.1992.0400316.CrossRefGoogle Scholar
StatSoft Inc., 1996 Statistica for Windows OK Tulsa.Google Scholar
Strens, R.G.J. and Wood, B.J., 1979 Diffuse reflectance spectra and optical properties of some iron and titanium oxides and oxyhydroxides Mineral Mag 43 347354 10.1180/minmag.1979.043.327.06.CrossRefGoogle Scholar
Taylor, R.M. and Schwertmann, U., 1974 Maghemite in soils and its origin. I. Properties and observations on soil maghemites Clay Miner 10 289298 10.1180/claymin.1974.010.4.07.CrossRefGoogle Scholar
Torrent, J. Barrón, V., Bigham, J.M. and Ciolkosz, E., 1993 Laboratory measurements of soil color: Theory and practice Soil color Madison, WI Soil Sci Soc Am. 2133.Google Scholar
Torrent, J. and Schwertmann, U., 1987 Influence of hematite on the color of red beds J Sediment Petrol 57 682686.Google Scholar
Torrent, J. Schwertmann, U. and Schulze, D.G., 1980 Iron oxide mineralogy of some soils of two river terrace sequences in Spain Geoderma 23 191208 10.1016/0016-7061(80)90002-6.CrossRefGoogle Scholar
Wyszecki, G. and Stiles, W.S., 1982 Color science: Concepts and methods, quantitative data and formulae New York J. Wiley.Google Scholar