Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-27T21:07:18.209Z Has data issue: false hasContentIssue false

One-Step Synthesis of Alkyltrimethylammonium-Intercalated Magadiite

Published online by Cambridge University Press:  28 February 2024

Heloise O. Pastore
Affiliation:
Instituto de Química, Universidade Estadual de Campinas, C.P. 6154, CEP 13083-970, Campinas, SP, Brazil
Marcelo Munsignatti
Affiliation:
Instituto de Química, Universidade Estadual de Campinas, C.P. 6154, CEP 13083-970, Campinas, SP, Brazil
Artur J. S. Mascarenhas
Affiliation:
Instituto de Química, Universidade Estadual de Campinas, C.P. 6154, CEP 13083-970, Campinas, SP, Brazil

Abstract

Cetyltrimethylammonium- and tetradecyltrimethylammonium-intercalated magadiites were prepared by direct syntheses, starting from sodium metasilicate (Na2O/SiO2 = 1.0) and nitric acid. Total substitution of sodium by cetyltrimethylammonium or tetradecyltrimethylammonium cations was not achieved in the range of surfactant: silicon molar ratios used in this study. When a phosphoniun-based surfactant replaces the ammonium surfactants in the same procedure, the result of the synthesis is a mixture of quartz and unmodified surfactant. If dodecylammonium bromide is used, an MCM-41 molecular sieve is obtained. The substitution of the silicon source by tetramethylammonium silicate or of nitric acid by hydrochloric, hydrofluoric, or acetic acids also yields MCM-41 molecular sieves, indicating that the formation of magadiite is greatly dependent on the presence of sodium cations and nitrate anions.

Type
Research Article
Copyright
Copyright © 2000, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almond, G.G. Harris, R.K. and Franklin, K.R., 1997 A structural consideration of kanemite, octosilicate, magadiite and kenyaite Journal of Materials Chemistry 7 681687 10.1039/a606856a.CrossRefGoogle Scholar
Annehed, H. Fälth, L. and Lincoln, F.J., 1982 Crystal structure of synthetic makatite Na2Si4O8(OH)2.4H2O Zeitschrift für Kristallographie 159 203210.CrossRefGoogle Scholar
Araya, A. and Lowe, B.M., 1985 A partial determination of the stability fields of ferrierite and zeolites ZSM-5, ZSM-48, and NU-10 in the K2O-Al2O3-SiO2-H2N(C2)NH2 system Journal of Chemical Research (S) 23 192193.Google Scholar
Barriet, D. Gamboa, C. and Sepulveda, L., 1980 Association of anions to cationic micelles Journal of Physical Chemistry 84 272275 10.1021/j100440a010.CrossRefGoogle Scholar
Beck, J.S. Vartuli, J.C. Roth, W.J. Leonowicz, M.E. Kresge, C.T. Schmitt, K.D. Chu, C.-W. Olson, DH Sheppard EW McCullen, SB H JB and Schlenker, J.L., 1992 A new family of mesoporous molecular sieves prepared with liquid crystal templates Journal of the American Chemical Society 114 1083410843 10.1021/ja00053a020.CrossRefGoogle Scholar
Beneke, K. and Lagaly, G., 1977 Kanemite-inner crystalline reactivity and relations to other sodium silicates American Mineralogist 62 763771.Google Scholar
Beneke, K. and Lagaly, G., 1983 Kenyaite-synthesis and properties American Mineralogist 68 818826.Google Scholar
Borbély, G.P. Beyer, HK K Y and Mizukami, F., 1997 Recrystallization of magadiite varieties isomorphically substituted with aluminum to MFI and MEL zeolites Microporous Materials 11 4551 10.1016/S0927-6513(97)00027-8.CrossRefGoogle Scholar
Borbély, G.P. Beyer, H.K. Kiyozumi, Y. and Mizukami, F., 1998 Synthesis and characterization of a ferrierite made by recrystallization of an aluminum-containing hydrated magadiite Microporous Mesoporous Materials 22 5768 10.1016/S1387-1811(98)00094-8.CrossRefGoogle Scholar
Burkett, S.L. Press, A. and Mann, S., 1997 Synthesis, characterization and reactivity of layered inorganic-organic nanocomposites based on 2:1 trioctahedral phyllosilicates Chemistry of Materials 9 10711073 10.1021/cm9700615.CrossRefGoogle Scholar
Carrado, K.A. Thiyagarajan, P. Winans, R.E. and Botto, R.E., 1991 Hydrothermal crystallization of porphyrin-containing layer silicates Inorganic Chemistry 30 794799 10.1021/ic00004a034.CrossRefGoogle Scholar
Carrado, K.A. Thiyagarajan, P. and Elder, D.L., 1996 Polyvinyl alcohol-clay complexes formed by direct synthesis Clays and Clay Minerals 44 506514 10.1346/CCMN.1996.0440409.CrossRefGoogle Scholar
Chen, C.-Y. Xiao, S.-Q. and Davis, M.E., 1995 Studies on ordered mesoporous materials 3. Comparison of MCM-41 to mesoporous materials derived from kanemite Microporous Materials 4 120 10.1016/0927-6513(94)00077-9.CrossRefGoogle Scholar
Crone, I.A. Franklin, K.R. and Graham, P., 1995 A new route for the preparation of hydrated alkali-metal silicates Journal of Materials Chemistry 5 20072011 10.1039/jm9950502007.CrossRefGoogle Scholar
Engelhardt, G. and Michel, D., 1987 High Resolution Solid-State NMR of Silicates and Zeolites Norwich John Wiley and Sons.Google Scholar
Eugster, H.P., 1967 Hydrous sodium silicates from lake Magadi, Kenya: Precursors of bedded chert Science 157 11771180 10.1126/science.157.3793.1177.CrossRefGoogle ScholarPubMed
Firouzi, A. Atef, F. Oertly, A.G. Stucky, G.D. and Schmelka, B.F., 1997 Alkaline lyotropic silicate-surfactant liquid crystals Journal of the American Chemical Society 119 35963610 10.1021/ja963007i.CrossRefGoogle Scholar
Flanigen, E.M. Khatami, H. Szymanski, H.A. and Rabo, J.A., 1976 Structural analysis by IR spectroscopy Zeolite Chemistry and Catalysis Washington, D.C. American Chemical Society 80117.Google Scholar
Fletcher, R.A. and Bibby, D.M., 1987 Synthesis of kenyaite and magadiite in the presence of various anions Clays and Clay Minerals 35 318320 10.1346/CCMN.1987.0350410.CrossRefGoogle Scholar
Iler, R.K., 1964 Ion-exchange properties of crystalline hydrated silica Journal of Colloid Science 19 648657 10.1016/0095-8522(64)90086-8.CrossRefGoogle Scholar
Inagaki, S. Fukushima, Y. and Kuroda, K., 1993 Synthesis of highly ordered mesoporous materials from a layered polysilicate Journal of Chemical Society, Chemical Communications 680682.CrossRefGoogle Scholar
Kosuge, K. and Tsunashima, A., 1996 Dispersion of H-magadiite and H-kenyite particles by ion exchange of H+ with alkali cations Langmuir 12 11241126 10.1021/la9504366.CrossRefGoogle Scholar
Morgan, J.D. Napier, D.H. Warr, G.G. and Nicol, S.K., 1994 Measurements of the selective adsorption of ions at air-surfactant solution interfaces Langmuir 10 797801 10.1021/la00015a033.CrossRefGoogle Scholar
Ogawa, M. Okutomo, S. and Kuroda, K., 1998 Control of interlayer microstructure of a layered silicate by surface modification with organochlorosilanes Journal of the American Chemical Society 120 73617362 10.1021/ja981055s.CrossRefGoogle Scholar
Pastore, H.O. Munsignatti, M. Rippel, M.M. and Bittencourt, D., 1999 Study on the formation of mesoporous molecular sieves in the presence of various anions Microporous and Mesoporous Materials 32 211228 10.1016/S1387-1811(99)00108-0.CrossRefGoogle Scholar
Schwieger, W. Heyer, W. and Bergk, K.-H., 1988 The hydrothermal magadiite crystallization 1. The kinetics of the crystallization-possibilities of their description Zeitschrift für Anorganische und Allgemeine Chemie 559 191200 10.1002/zaac.19885590122.CrossRefGoogle Scholar
Schwieger, W. Bergk, K.-H. Heinemann, D L G and Beneke, K., 1991 High-resolution Si-29 solid-state NMR-studies on a synthetic sodium silicate hydrate (makatite) and its crystalline silicic acid Zeitschrift für Kristallographie 197 112 10.1524/zkri.1991.197.1-2.1.CrossRefGoogle Scholar
Sepulveda, L. and Cortes, J., 1985 Ionization degrees and critical micelle concentrations of hexadecyltrimethylammonium and tetradecyltrimethylammonium micelles with different counterions Journal of Physical Chemistry 89 53225324 10.1021/j100270a040.CrossRefGoogle Scholar
Van der Gaag, F.J. Jansen, J.C. and van Bekkum, H., 1985 Template variations in the synthesis of zeolite ZSM-5 Applied Catalysis 17 261271 10.1016/S0166-9834(00)83209-1.CrossRefGoogle Scholar
Wang, Z. and Pinnavaia, T.J., 1998 Hybrid organic-inorganic nanocomposites: Exfoliation of magadiite nanolayers in an elastomeric epoxy polymer Chemistry of Materials 10 18201826 10.1021/cm970784o.CrossRefGoogle Scholar
Wang, Z. Lau, T. and Pinnavaia, T.J., 1996 Hybrid organic inorganic nanocomposites formed from an epoxy polymer and a layered silicic acid (magadiite) Chemistry of Materials 8 2200 10.1021/cm960263l.CrossRefGoogle Scholar
Whitehurst, D.D., 1992 Method to recover organic templates from freshly synthesized molecular sieves .Google Scholar
Wirth, M.J. Fairbank, R.W.P. and Fatunmbi, H.O., 1997 Mixed self-assembled monolayers in chemical separations Science 275 4447 10.1126/science.275.5296.44.CrossRefGoogle ScholarPubMed
Yanagisawa, T. Kuroda, K. and Kato, C., 1988 Organic derivatives of layered polysilicates 2. Reaction of magadiite and kenyite with diphenylmethylchlorosilane Bulletin of the Chemical Society of Japan 61 37433745 10.1246/bcsj.61.3743.CrossRefGoogle Scholar