Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T10:13:12.727Z Has data issue: false hasContentIssue false

Preparation and Characterization of Ti-Pillared Clays Using Ti Alkoxides. Influence of the Synthesis Parameters

Published online by Cambridge University Press:  01 January 2024

José Luis Valverde*
Affiliation:
Facultad de Ciencias Químicas, Departamento de Ingeniería Química, Universidad de Castilla-La Mancha, 13004 Ciudad Real, Spain
Paula Sánchez
Affiliation:
Facultad de Ciencias Químicas, Departamento de Ingeniería Química, Universidad de Castilla-La Mancha, 13004 Ciudad Real, Spain
Fernando Dorado
Affiliation:
Facultad de Ciencias Químicas, Departamento de Ingeniería Química, Universidad de Castilla-La Mancha, 13004 Ciudad Real, Spain
Isaac Asencio
Affiliation:
Facultad de Ciencias Químicas, Departamento de Ingeniería Química, Universidad de Castilla-La Mancha, 13004 Ciudad Real, Spain
Amaya Romero
Affiliation:
Facultad de Ciencias Químicas, Departamento de Ingeniería Química, Universidad de Castilla-La Mancha, 13004 Ciudad Real, Spain
*
*E-mail address of corresponding author: jlvalver@inqu-cr.uclm.es

Abstract

Titanium was introduced into the clay structure by cation exchange with polymeric Ti cations which were formed by partial hydrolysis of Ti alkoxide in HCl. X-ray diffraction, N2 adsorption-desorption, chemical analysis, thermogravimetric analysis, differential thermal analysis, temperature-programmed desorption of ammonia and temperature-programmed reduction were used to characterize the resulting Ti-pillared clays (Ti-PILCs). Titanium methoxide allows the synthesis of a solid with a large basal spacing (26 Å), a large surface area (360 m2/g), a significant amount of micropore surface area (90%), and notable acidity. Moreover, Ti-PILCs obtained from methoxide were found to be thermally stable up to 500°C. A correlation between the increase in acidity and the increases in both microporosity and Ti content was observed. The surface area, the micropore volume, the acidity and the d001 peak intensity all increased upon increasing the amount of Ti added to the preparation (up to ∼15 mmoles of Ti/g clay). The use of an aqueous suspension of 0.13 wt.% of clay yielded the best structural and textural properties in terms of subsequent use of the clay as a catalyst.

Type
Research Article
Copyright
Copyright © 2003, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baes, C.F. and Mesmer, R.E., (1976) The Hydrolysis of Cations New York Wiley.Google Scholar
Bagshaw, S.A. and Cooney, R.P., (1993) FTIR surface site analysis of pillared clays using pyridine probe species Chemistry of Materials 5 11011109 10.1021/cm00032a013.Google Scholar
Bahranowski, K. and Serwicka, E.M., (1993) ESR study of vanadium-doped alumina and pillared montmorillonites Colloids and Surfaces A 72 153160 10.1016/0927-7757(93)80461-M.Google Scholar
Barrer, R.M. Joyner, L.G. and Halenda, P.P., (1951) The determination of pore volume and area distribution in porous substances Journal of the American Chemical Society 73 373380 10.1021/ja01145a126.Google Scholar
Bernier, A. Admaiai, L.F. and Grange, P., (1991) Synthesis and characterization of titanium pillared clays. Influence of the temperature of preparation Applied Catalysis 77 269281 10.1016/0166-9834(91)80071-4.Google Scholar
Bovey, J. Kooli, F. and Jones, W., (1996) Preparation and characterization of Ti-Pillared acid-activated clay catalysts Clay Minerals 31 501506 10.1180/claymin.1996.031.4.07.Google Scholar
Burch, R., (1988) Introduction Catalysis Today 2 185186 10.1016/0920-5861(88)85001-6.Google Scholar
Cañizares, P. Valverde, J.L. Molina, C.B. Rodriguez, L. and Sánchez, P., (1999) Synthesis and characterization of PILCs with single and mixed oxide pillars prepared from two different bentonites. A comparative study Microporous and Mesoporous Materials 29 267281 10.1016/S1387-1811(98)00295-9.Google Scholar
Chevalier, S. Franck, R. Suquet, H. Lambert, J.F. and Barthomeuf, D., (1994) Al-pillared saponites Journal of the Chemical Society 90 667 674.Google Scholar
Clearfield, A., (1994) Pillaring studies on the some layered oxides with Ruddlesden-copper related structures Journal of Solid State Chemistry 112 288294 10.1006/jssc.1994.1306.Google Scholar
Del Castillo, H.L., (1993) Preparation and catalytic activity of titanium pillared montmorillonite Applied Catalysis A: General 103 2334 10.1016/0926-860X(93)85170-T.Google Scholar
Del Castillo, H.L. Gil, A. and Grange, P., (1996) Selective catalytic reduction of NO by NH3 on titanium pillared montmorillonite Catalysis Letters 36 237239 10.1007/BF00807625.Google Scholar
Del Castillo, H.L. Gil, A. and Grange, P., (1997) Influence of the nature of titanium alkoxide and of the acid of hydrolysis in the preparation of titanium pillared montmorillonites Journal of Physics and Chemistry of Solids 58 10531062 10.1016/S0022-3697(97)00006-1.Google Scholar
Einaga, H., (1979) Hydrolysis of titanium(IV) in aqueous (Na,H)Cl solution Journal of the Chemical Society, Dalton Transactions 1917 1919.Google Scholar
Gil, A. and Montes, M., (1997) Metathesis of propene on molybdenum-alumina-pillared montmorillonite Industrial & Engineering Chemistry Research 36 14311443 10.1021/ie960578a.Google Scholar
Gil, A. Diaz, A. Montes, M. and Acosta, D.R., (1994) Characterization of the microporosity of pillared clays by nitrogen adsorption. Application of the Horvath–Kawazoe approach Journal of Materials Science 29 49274932 10.1007/BF00356545.Google Scholar
Horvath, R. and Kawazoe, K.J., (1983) Method for the calculation of effective pore size distribution in molecular sieve carbon Chemistry Engineering Japan 16 470475 10.1252/jcej.16.470.Google Scholar
Hutson, N.D., (1999) Control of microporosity of Al2O3-pillared clays: effect of pH, calcination temperature and clay cation exchange capacity Microporous and Mesoporous Materials 28 447459 10.1016/S1387-1811(98)00334-5.Google Scholar
Hutson, N.D. Gualdoni, D.J. and Yang, R.T., (1998) Synthesis and characterization of the microporosity of ion-exchanged Al2O3 pillared clays Chemistry of Materials 10 37073715 10.1021/cm980454j.Google Scholar
Kloprogge, J.T., (1998) Synthesis of smectites and porous pillared clay catalysts: A review Journal of Porous Materials 5 541 10.1023/A:1009625913781.Google Scholar
Kloprogge, J.T. Booy, E. Jansen, J.B.H. and Geus, J.W., (1994) The effect of thermal treatment on the properties of hydroxy-Al and hydroxy-Ga pillared montmorillonite and beidellite Clay Minerals 29 153167 10.1180/claymin.1994.029.2.02.Google Scholar
Kooli, F. Bovey, J. and Jones, W., (1997) Dependence of the properties of titanium-pillared clays on the host matrix: a comparison of montmorillonite, saponite and rectorite pillared materials Journal of Materials Chemistry 7 153158 10.1039/a604865j.Google Scholar
Kostoglod, N.Y. Sychev, M.V. Prikhod’ko, R.V. Astrelin, I.M. Stepanenko, A.V. and Rozwadowski, M., (1998) Porous structure of pillared clays II. Montmorillonte pillared with titanium dioxide Kinetics and Catalysis 39 547 553.Google Scholar
Lahav, N. Shani, U. and Shabtai, J., (1978) Cross-linked smectites. I: Preparation and properties of some hydroxy-aluminum montmorillonite Clays and Clay Minerals 26 107115 10.1346/CCMN.1978.0260205.Google Scholar
Li, W. Sirilumpen, M. and Yang, R.T., (1997) Selective catalytic reduction of nitric oxide by ethylene in the presence of oxygen over Cu2+ ion-exchanged pillared clays Applied Catalysis B: Environmental 11 347363 10.1016/S0926-3373(96)00056-2.Google Scholar
Long, R.Q. and Yang, R.T., (2000) Catalytic performance and characterization of VO2+-exchanged titania pillared clays for selective catalytic reduction of nitric oxide with ammonia Journal of Catalysis 196 7385 10.1006/jcat.2000.3015.Google Scholar
Malla, P. Yamanaka, S. and Komarneni, S., (1989) Unusual water vapor adsorption behaviour of montmorillonite pillared with ceramic oxides Solid State Ionics 32/33 354362 10.1016/0167-2738(89)90241-5.Google Scholar
Monkaya, R. and Jones, W., (1995) Pillared clays and pillared acid-activated clays: A comparative study of physical, acidic and catalytic properties Journal of Catalysis 153 7685 10.1006/jcat.1995.1109.Google Scholar
Nabivanets, B.I. and Kudritskaya, L.N., (1967) A study on the polymerization of titanium (IV) in hydrochloric acid solutions Russian Journal of Inorganic Chemistry 12 616 620.Google Scholar
Occelli, M.L. and Tindwa, R.L., (1983) Physicochemical properties of montmorillonite interlayered with cationic oxyaluminum pillars Clays and Clay Minerals 31 2228 10.1346/CCMN.1983.0310104.Google Scholar
Pesquera, C. González, F. Benito, I. Mendioroz, S. and Pajares, J.A., (1991) Synthesis and characterization of pillared montmorillonite catalysts Applied Catalysis 69 97104 10.1016/S0166-9834(00)83294-7.Google Scholar
Purnell, J.H. and Michell, I.V., (1990) Current trends and applications Pillared Layered Structures London & New York Elsevier Applied Science 107 112.Google Scholar
Shabtai, J. Rosell, M. and Tokarz, M., (1984) Cross-linked smectites III. Synthesis and properties of hydroxy-aluminum hectorites and fluorhectorites Clays and Clay Minerals 35 99107 10.1346/CCMN.1984.0320203.Google Scholar
Sing, K.S.W. Everett, D.H. Haul, R.A.W. Moscou, L. Pierotti, R.A. Rouguerol, J. and Siernieniewska, T., (1985) Reporting physisorption data for gas/solids systems with special reference to the determination of surface area and porosity Pure and Applied Chemistry 57 603619 10.1351/pac198557040603.Google Scholar
Sprung, R. Davies, M.E. Kauffman, J.S. and Dybowsky, C., (1990) Pillared magadiite with silicate species Industrial Engineering Chemistry Resource 29 213220 10.1021/ie00098a011.Google Scholar
Sterte, J., (1986) Synthesis and properties of titanium oxide cross-linked montmorillonite Clays and Clay Minerals 34 658664 10.1346/CCMN.1986.0340606.Google Scholar
Sun Kou, M.R. Mendioroz, S. and Muñoz, V., (2000) Evaluation of the acidity of pillared montmorillonites by pyridine adsorption Clay and Clay Minerals 48 528536 10.1346/CCMN.2000.0480505.Google Scholar
Sychev, M. and Rozwadowski, M., (1992) Titania pillared montmorillonite (TiPILM): sorption and spectroscopic characterization “Characterization and properties of zeolitic materials” Poland Torun 63 65.Google Scholar
Sychev, M. Shubinaa, T. Rozwadowskib, A.P.B. Sommene, V. De Beerc, H.J. and Van Santenc, R.A., (2000) Characterization of the microporosity of chromia and titania-pillared montmorillonites differing in pillar density Microporous and Mesoporous Materials 37 187200 10.1016/S1387-1811(99)00265-6.Google Scholar
Van Olphen, H., (1963) An Introduction to Clay Colloid Chemistry 2nd New York Wiley.Google Scholar
Vicente, M.A. Bañares-Muñoz, M.A. Toranzo, R. Gandía, L.M. and Gil, A., (2001) Influence of the Ti precursor on the properties of Ti-pillared smectites Clay Minerals 36 125138 10.1180/000985501547295.Google Scholar
Yamanaka, S. and Brindley, G.W., (1979) High surface area solids obtained by reaction of montmorillonite with zirconyl chloride Clays and Clay Minerals 27 119124 10.1346/CCMN.1979.0270207.Google Scholar
Yamanaka, S. Nishihara, T. Hattori, M. and Suzuki, Y., (1987) Preparation and properties of titania pillared clay Mathematics, Chemistry and Physics 17 87101 10.1016/0254-0584(87)90050-2.Google Scholar
Yang, R.T. Chen, J.P. Kikkinides, E.S. Cheng, L.S. and Cichanowicz, J.E., (1992) Pillared clays as superior catalysts for selective catalytic reduction of nitric oxide with ammonia Industrial Engineering Chemistry Resource 31 14401445 10.1021/ie00006a003.Google Scholar
Zhu, H.Y. Gao, W.H. and Vansant, E.F., (1995) The porosity and water adsorption of alumina-pillared montmorillonite Journal of Colloids and Interface Science 171 377385 10.1006/jcis.1995.1193.Google Scholar