Skip to content
Publicly Available Published by De Gruyter January 1, 2009

Understanding solvation

  • Omar A. El Seoud

Abstract

The effects of solvents on different chemical phenomena, including reactivity, spectroscopic data, and swelling of biopolymers can be rationalized by use of solvatochromic probes, substances whose UV-vis spectra, absorption, or emission are sensitive to the properties of the medium. Thermo-solvatochromism refers to the effect of temperature on solvatochromism. The study of both phenomena sheds light on the relative importance of the factors that contribute to solvation, namely, properties of the probe, those of the solvent (acidity, basicity, dipolarity/polarizability, and lipophilicity), and the temperature. Solvation in binary solvent mixtures is complex because of "preferential solvation" of the probe by one component of the mixture. A recently introduced solvent exchange model is based on the presence in the binary solvent mixture of the organic component (molecular solvent or ionic liquid), S, water, W, and a 1:1 hydrogen-bonded species (S-W). Solvation by the latter is more efficient than by its precursor solvents, due to probe-solvent hydrogen-bonding and hydrophobic interactions; dimethyl sulfoxide (DMSO)-W is an exception. Solvatochromic data are employed in order to explain apparently disconnected phenomena, namely, medium effect on the pH-independent hydrolysis of esters, 1H NMR data of water-ionic liquid (IL) mixtures, and the swelling of cellulose.


Conference

International Conference on Physical Organic Chemistry (ICPOC-19), International Conference on Physical Organic Chemistry, ICPOC, Physical Organic Chemistry, 19th, Santiago de Compostela, Spain, 2008-07-13–2008-07-18


References

1. (a) doi:10.1021/jo970070x, O. A. El Seoud, M. I. El Seoud, J. P. S. Farah. J. Org. Chem. 62, 5928 (1997);Search in Google Scholar

1. (b) doi:10.1002/poc.1081, O. A. El Seoud, F. Siviero. J. Phys. Org. Chem. 19, 793 (2006).Search in Google Scholar

2. doi:10.3891/acta.chem.scand.30a-0673, S. Sorensen. Acta Chem. Scand. A 30, 673 (1976).Search in Google Scholar

3. (a) doi:10.1021/jp8017474, C. T. Martins, B. M. Sato, O. A. El Seoud. J. Phys. Chem. B 112, 8330 (2008);Search in Google Scholar

3. (b) C. T. Martins. Ph.D. Thesis, Institute of Chemistry, University of Sao Paulo (2007).Search in Google Scholar

4. (a) doi:10.1016/0301-0104(75)85022-1, A. Coccia, P. L. Indovina, F. Podo, V. Viti. Chem. Phys. 7, 30 (1975);Search in Google Scholar

4. (b) doi:10.1021/j100010a014, K. Mizuno, K. Oda, S. Maeda, Y. Shindo, A. Okamura. J. Phys. Chem. 99, 3056 (1995);Search in Google Scholar

4. (c) doi:10.1021/jp960194y, K. Mizuno, K. Oda, Y. Shindo, A. Okumura. J. Phys. Chem. 100, 10310 (1996).Search in Google Scholar

5. doi:10.1007/b136818, O. A. El Seoud, T. Heinze. Adv. Polym. Sci. 186, 103 (2005).Search in Google Scholar

6. doi:10.1002/3527601929.ch2c, D. Klemm, B. Philipp, T. Heinze, U. Heinze, W. Wagenknecht. Comprehensive Cellulose Chemistry, Vol. 1, pp. 43-56, Wiley-VCH, Weinheim (1998).Search in Google Scholar

7. doi:10.1007/s10570-007-9189-x, O. A. El Seoud, L. C. Fidale, N. Ruiz, M.-L. O. D'Almeida, E. Frollini. Cellulose 15, 371 (2008).Search in Google Scholar

8. (a) C. Reichardt. Solvents and Solvent Effects in Organic Chemistry, 3rd ed., p. 5, 329, 389, VCH, Weinheim (2003);Search in Google Scholar

8. (b) doi:10.1351/pac200476101903, C. Reichardt. Pure Appl. Chem. 76, 1903 (2004);Search in Google Scholar

8. (c) doi:10.1351/pac200880071415, C. Reichardt. Pure Appl. Chem. 80, 1415 (2008).Search in Google Scholar

9. (a) doi:10.1002/9780470171929.ch6, M. J. Kamlet, R. W. Taft. Prog. Phys. Org. Chem. 13, 485 (1981);Search in Google Scholar

9. (b) doi:10.1139/v88-420, M. H. Abraham, P. L. Grellier, J.-L. M Abboud, R. M. Doherty, R. W. Taft. Can. J. Chem. 66, 2673 (1988);Search in Google Scholar

9. (c) doi:10.1021/j100074a003, C. Laurence, P. Nicolet, M. T. Dalati, J.-L. M Abboud, R. Notario. J. Phys. Chem. 98, 5807 (1994).Search in Google Scholar

10. doi:10.1021/jp8067552, P. L. Silva, P. A. R. Pires, M. A. S. Trassi, O. A. El Seoud. J. Phys. Chem. B 112, 14976 (2008).Search in Google Scholar

11. doi:10.1023/A:1008762321231, A. J. Leo, C. Hansch. Perspect. Drug Discov. Des. 17, 1 (1999).Search in Google Scholar

12. (a) J. Catalan, C. Diaz. Liebigs Annal. Rec. 1941 (1997);10.1002/jlac.199719970921Search in Google Scholar

12. (b) doi:10.1002/(SICI)1099-0690(199904)1999:4<885::AID-EJOC885>3.0.CO;2-W, J. Catalan, C. Diaz. Eur. J. Org. Chem. 885 (1999).Search in Google Scholar

13. doi:10.1021/jo061533e, C. T. Martins, M. S. Lima, O. A. El Seoud. J. Org. Chem. 71, 9068 (2006).Search in Google Scholar

14. doi:10.1039/f19868203097, J. G. Dawber, R. A. Williams. J. Chem. Soc., Faraday Trans. 1 82, 3097 (1986).Search in Google Scholar

15. (a) doi:10.1021/jp709819n, A. Maitra, S. Bagchi. J. Phys. Chem. B 112, 2056 (2008);Search in Google Scholar

15. (b) doi:10.1021/jp710874e, A. Maitra, S. Bagchi. J. Phys. Chem. B 112, 9847 (2008).Search in Google Scholar

16. (a) doi:10.1016/0022-2860(72)80060-7, B. Z. Gorbunov, Yul. Naberukhin. J. Mol. Struct. 14, 113 (1972);Search in Google Scholar

16. (b) doi:10.1007/BF00748082, B. Z. Gorbunov, Yul. Naberukhin. J. Struct. Chem. 16, 755 (1975);Search in Google Scholar

16. (c) A. J. Easteal. Aust. J. Chem. 32, 1379 (1979);10.1071/CH9791379Search in Google Scholar

16. (d) S. Balakrishnan, A. J. Easteal. Aust. J. Chem. 34, 943 (1981);10.1071/CH9810943Search in Google Scholar

16. (e) doi:10.1016/0021-9614(82)90171-9, A. J. Easteal, L. A. Woolf. J. Chem. Thermodyn. 14, 755 (1982).Search in Google Scholar

17. Y. Marcus. Monatsh. Chem. 132, 1387 (2001) and refs. cited therein.10.1007/s007060170023Search in Google Scholar

18. (a) doi:10.1039/ft9928803541, E. Bosch, M. Roses. J. Chem. Soc., Faraday Trans. 88, 3541 (1992);Search in Google Scholar

18. (b) doi:10.1039/p29950001607, M. Roses, C. Rafols, J. Ortega, E. Bosch. J. Chem. Soc., Perkin Trans. 2 1607 (1995).Search in Google Scholar

19. (a) doi:10.1002/mrc.1260250705, L. F. Shen, Y. R. Du, Q. F. Shao, S. Z. Mao. Magn. Reson. Chem. 25, 575 (1987);Search in Google Scholar

19. (b) doi:10.1039/ft9949000429, J. S. Chen, J. C. Shiao. J. Chem. Soc., Faraday Trans. 90, 429 (1994);Search in Google Scholar

19. (c) doi:10.1021/jp952596w, F. Eblinger, H. J. Schneider. J. Phys. Chem. 100, 5533 (1996);Search in Google Scholar

19. (d) doi:10.1139/v01-198, J. J. Max, S. Daneault, C. Chapados. Can. J. Chem. 80, 113 (2002).Search in Google Scholar

20. doi:10.1007/BF00649038, J. F. Coetzee, A. Hussam. J. Solution Chem. 11, 395 (1982).Search in Google Scholar

21. (a) doi:10.1002/poc.632, E. B. Tada, P. L. Silva, O. A. El Seoud. J. Phys. Org. Chem. 16, 691 (2003);Search in Google Scholar

21. (b) doi:10.1039/b308550c, E. B. Tada, P. L. Silva, O. A. El Seoud. Phys. Chem. Chem. Phys. 5, 5378 (2003);Search in Google Scholar

21. (c) doi:10.1002/poc.887, E. B. Tada, P. L. Silva, C. M. Tavares, O. A. El Seoud. J. Phys. Org. Chem. 18, 398 (2005);Search in Google Scholar

21. (d) E. B. Tada. Ph.D. Thesis, Institute of Chemistry, University of Sao Paulo (2004).Search in Google Scholar

22. doi:10.1021/jp068596l, P. L. Silva, E. L. Bastos, O. A. El Seoud. J. Phys. Chem. B 111, 6173 (2007).Search in Google Scholar

23. E. V. Anslyn, D. A. Dougherty. Modern Physical Organic Chemistry, pp. 355-412, University Science Books, Sausalito, CA (2006).Search in Google Scholar

24. (a) doi:10.1021/ar010070q, W. Leitner. Acc. Chem. Res. 35, 746 (2002);Search in Google Scholar

24. (b) doi:10.1002/poc.863, C. Chiappe, D. Pieraccini. J. Phys. Org. Chem. 18, 275 (2005).Search in Google Scholar

Published Online: 2009-01-01
Published in Print: 2009-01-01

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1351/PAC-CON-08-09-27/html
Scroll to top button