Skip to content
Publicly Available Published by De Gruyter November 19, 2010

Toward carbon dioxide capture using nanoporous materials

  • Deanna M. D'Alessandro and Thomas McDonald

The development of more efficient processes for CO2 capture from the flue streams of power plants is considered a key to the reduction of greenhouse gas emissions implicated in global warming. Indeed, several U.S. and international climate change initiatives have identified the urgent need for improved materials and methods for CO2 capture. Conventional CO2 capture processes employed in power plants world-wide are typically postcombustion “wet scrubbing” methods involving the absorption of CO2 by amine-containing solvents such as methanolamine (MEA). These present several disadvantages, including the considerable heat required in regeneration of the solvent and the necessary use of inhibitors for corrosion control, which lead to reduced efficiencies and increased costs for electricity production. This perspective article seeks to highlight the most recent advances in new materials for CO2 capture from power plant flue streams, with particular emphasis on the rapidly expanding field of metal–organic frameworks. Ultimately, the development of new classes of efficient, cost-effective, and industrially viable capture materials for application in carbon capture and storage (CCS) systems offers an immense opportunity to reduce atmospheric emissions of greenhouse gases on a national and international scale.

References

1 10.1175/2009JCLI2863.1, A. P. Sokolov, P. H. Stone, C. E. Forest, R. Prinn, M. C. Sarofim, M. Webster, S. Paltsev, C. A. Schlosser, D. Kicklighter, S. Dutkiewicz, J. M. Reilly, C. Wang, B. Felzer, H. D. Jacoby. J. Climate22, 5175 (2009).Search in Google Scholar

2 A. Neftel, H. Friedli, E. Moor, H. Lötscher, H. Oeschger, U. Siegenthaler, B. Stauffer. In Trends: A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy (1994).Search in Google Scholar

3 R. F. Keeling, S. C. Piper, A. F. Bollenbacher, S. J. Walker. In Atmospheric CO2values derived from in situ air samples collected at Manua Loa, Hawaii, USA, Scripps Institution of Oceanography, La Jolla, CA (2009).Search in Google Scholar

4 U.S. Energy Information Administration. International Energy Outlook 2010, <http:/www.eia.doe.gov/oiaf/ieo/> (2010).Search in Google Scholar

5 B. Metz, O. Davidson, H. de Coninck, M. Loos, L. Meyer. IPCC Special Report on Carbon Dioxide Capture and Storage. Cambridge University Press, Cambridge, UK (2005).Search in Google Scholar

6 United Nations Framework Convention on Climate Change. <http:unfccc.int/2860.php>.Search in Google Scholar

7 Carbon Sequestration Leadership Forum. <http://www.cslforum.org>.Search in Google Scholar

8 Global Climate Change Initiative. <http://www.state.gov/g/oes/rls/fs/2002/12956.htm>.Search in Google Scholar

9 FutureGen Alliance, Inc. <http://www.futuregenalliance.org>.Search in Google Scholar

10 10.1016/j.memsci.2005.12.062, C. E. Powell, G. G. Qiao. J. Membr. Sci.279, 1 (2006).Search in Google Scholar

11 10.1016/S1750-5836(07)00094-1, J. D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, R. D. Srivastava. Int. J. Greenhouse Gas Control2, 9 (2008).Search in Google Scholar

12 10.1002/aic.690490708, S. Freguia, G. T. Rochelle. AIChE J.49, 1676 (2003).Search in Google Scholar

13 10.1002/ceat.200700268, P. D. Vaidya, E. Y. Kenig. Chem. Eng. Technol.30, 1467 (2007).Search in Google Scholar

14 10.2516/ogst:2005027, P. H. M. Feron, C. A. Hendriks. Oil Gas Sci. Technol.60, 451 (2005).Search in Google Scholar

15 10.2516/ogst:2005029, L. I. Eide, D. W. Bailey. Oil Gas Sci. Technol.60, 475 (2005).Search in Google Scholar

16 10.1080/009083190933825, M. M. Abu-Khader. Energy Sources, Part A28, 1261 (2006).Search in Google Scholar

17 10.1002/anie.201000431, D. M. D’Alessandro, B. Smit, J. R. Long. Angew. Chem., Int. Ed.49, 6058 (2010).Search in Google Scholar PubMed

18 S. Shackley, C. Gough (Eds.). Carbon Capture and its Storage: An Integrated Assessment, Ashgate, UK (2006).Search in Google Scholar

19 10.1016/j.fuproc.2005.01.002, X. Xu, C. Song, B. G. Miller, A. W. Scaroni. Fuel Process. Technol.86, 1457 (2005).Search in Google Scholar

20 10.1021/ja077795v, J. C. Hicks, J. H. Drese, D. J. Fauth, M. L. Gray, G. Qi, C. W. Jones. J. Am. Chem. Soc.130, 2902 (2008).Search in Google Scholar

21 10.1016/0020-1693(95)04534-1, O. Leal, C. Bolivar, C. Ovalles, J. Garcia, Y. Espidel. Inorg. Chim. Acta240, 183 (1995).Search in Google Scholar

22 R. V. Sirwardane. 6,908,497 B1 (2005).Search in Google Scholar

23 10.1016/j.micromeso.2004.07.035, P. J. E. Harlick, F. H. Tezel. Microporous Mesoporous Mater.76, 71 (2004).Search in Google Scholar

24 10.1021/jp052716s, G. Maurin, P. L. Llewellyn, R. G. Bell. J. Phys. Chem. B109, 16084 (2005).Search in Google Scholar PubMed

25 10.1126/science.1152516, R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O’Keeffe, O. M. Yaghi. Science319, 939 (2008).Search in Google Scholar PubMed

26 10.1073/pnas.0602439103, K. S. Park, Z. Ni, A. P. Cote, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O’Keeffe, O. M. Yaghi. Proc. Nat. Acad. Sci. USA103, 10186 (2006).Search in Google Scholar PubMed PubMed Central

27 10.1038/nmat1927, H. Hayashi, A. P. Cote, H. Furukawa, M. O’Keeffe, O. M. Yaghi. Nat. Mater.6, 501 (2007).Search in Google Scholar PubMed

28 X.-J. Hou, H. Li. J. Phys. Chem. C114, 13501 (2010).10.1021/jp103778jSearch in Google Scholar

29 10.1021/ja104035j, W. Morris, B. Leung, H. Furukawa, O. K. Yaghi, N. He, H. Hayashi, Y. Houndonougbo, M. Asta, B. B. Laird, O. M. Yaghi. J. Am. Chem. Soc.132, 11006 (2010).Search in Google Scholar PubMed

30 10.1038/35104634, L. Schlapbach, A. Züttel. Nature414, 353 (2001).Search in Google Scholar PubMed

31 10.1038/nature01650, O. M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, J. Kim. Nature423, 705 (2003).Search in Google Scholar PubMed

32 10.1039/b511962f, U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt, J. Pastre. J. Mater. Chem.16, 626 (2006).Search in Google Scholar

33 10.1126/science.1083440, N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O’Keeffe, O. M. Yaghi. Science300, 1127 (2003).Search in Google Scholar PubMed

34 10.1039/b702858j, D. J. Collins, H.-C. Zhou. J. Mater. Chem.17, 3154 (2007).Search in Google Scholar

35 L. J. Murray, M. Dincă, J. Long. Chem. Soc. Rev.39, 1294 (2008).Search in Google Scholar

36 Z. Xiang, D. Cao, X. Shao, W. Wang, J. Zhang, W. Wu. Chem. Eng. Sci.65, 3140 (2010).Search in Google Scholar

37 10.1021/ar1000617, O. K. Farha, J. T. Hupp. Acc. Chem. Res.43, 1166 (2010).Search in Google Scholar PubMed

38 10.1039/c0sc00179a, K. Sumida, S. Horike, S. S. Kaye, Z. R. Herm, W. L. Queen, C. M. Brown, F. Grandjean, G. J. Long, A. Dailly, J. R. Long. Chem. Sci.1, 184 (2010).Search in Google Scholar

39 10.1021/ja0570032, A. R. Millward, O. M. Yaghi. J. Am. Chem. Soc.127, 17998 (2005).Search in Google Scholar PubMed

40 10.1126/science.1192160, H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. O. Yazaydin, R. Q. Snurr, M. O’Keeffe, J. Kim, O. Yaghi. Science329, 424 (2010).Search in Google Scholar PubMed

41 10.1021/jp075782y, N. A. Ramsahye, G. Maurin, S. Bourrelly, P. L. Llewellyn, C. Serre, T. Loiseau, T. Devic, G. Ferey. J. Phys. Chem. C112, 514 (2008).Search in Google Scholar

42 10.1002/adma.200602645, C. Serre, S. Bourrelly, A. Vimont, N. A. Ramsahye, G. Maurin, P. L. Llewellyn, M. Daturi, Y. Filinchuk, O. Leynaud, P. Barnes, G. Ferey. Adv. Mater.19, 2246 (2007).Search in Google Scholar

43 10.1039/b702986a, N. A. Ramsahye, G. Maurin, S. Bourrelly, P. L. Llewellyn, T. Loiseau, C. Serre, G. Ferey. Chem. Commun. 3261 (2007).Search in Google Scholar PubMed

44 10.1039/b613378a, N. A. Ramsahye, G. Maurin, S. Bourrelly, P. Llewellyn, T. Loiseau, G. Ferey. Phys. Chem. Chem. Phys.9, 1059 (2007).Search in Google Scholar PubMed

45 10.1002/anie.200602278, P. L. Llewellyn, S. Bourrrelly, C. Serre, Y. Filinchuk, G. Ferey. Angew. Chem., Int. Ed.45, 7751 (2006).Search in Google Scholar PubMed

46 10.1021/ja0570032, A. R. Millward, O. M. Yaghi. J. Am. Chem. Soc.127, 17998 (2005).Search in Google Scholar PubMed

47 10.1021/ja903411w, A. Demessence, D. M. D’Alessandro, M. L. Foo, J. R. Long. J. Am. Chem. Soc.131, 8784 (2009).Search in Google Scholar PubMed

48 10.1039/c0dt00392a, J.-M. Gu, T.-H. Kwon, J.-H. Park, S. Huh. Dalton Trans.39, 5608 (2010).Search in Google Scholar PubMed

49 10.1021/ja1012992, J. An, N. Rosi. J. Am. Chem. Soc.132, 5578 (2010).Search in Google Scholar PubMed

50 10.1021/cg100646e, A. Torrisi, R. G. Bell, C. Mellot-Draznieks. Cryst. Growth Des.10, 2839 (2010).Search in Google Scholar

51 10.1021/ie100214a, R. Babarao, J. W. Jiang. Ind. Eng. Chem. Res. (2010).Search in Google Scholar

52 10.1021/nn100962r, J. Lan, D. Cao, W. Wang, B. Smit. ACS Nano4, 4225 (2010).Search in Google Scholar PubMed

53 10.1039/b909861e, R. Babarao, J. W. Jiang. Energy Environ. Sci.2, 1088 (2009).Search in Google Scholar

54 10.1021/la100509g, R. Babarao, M. Eddaoudi, J. W. Jiang. Langmuir26, 11196 (2010).Search in Google Scholar PubMed

55 10.1021/la102359q, J. Liu, Y. Wang, A. I. Benin, P. Jakubezak, R. R. Willis, M. D. LeVan. Langmuir26, 14301 (2010).Search in Google Scholar PubMed

Online erschienen: 2010-11-19
Erschienen im Druck: 2010-11-19

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1351/PAC-CON-10-09-18/html
Scroll to top button