Skip to content
Publicly Available Published by De Gruyter April 4, 2011

Chemistry of salts in aqueous solutions: Applications, experiments, and theory

  • Wolfgang Voigt

Salts comprise a very large and important group of chemical compounds. Natural occurrence of salts and industrial processes of their recovery, conversion, purification, and use depend on solubility phenomena and their chemistry in aqueous solutions, mostly in multi-ion systems. Modeling of these processes as well as developing new ones requires knowledge of the properties of the aqueous salt solutions in extended T-p-x ranges including a growing number of components in solutions (CO2, SO2, lithium salts, salts of rare earth metals, actinides, etc.). At least for the thermodynamic properties, the general accepted methodology is to use thermodynamic databases of aqueous species and solids in combination with an appropriate ion-interaction model to perform equilibrium calculations for species distributions in solution and phase equilibria. The situation in respect to available thermodynamic models and data for their parameterization is discussed at selected examples. Thereby, the importance of accurate experimental determinations of phase equilibrium data for derivation of model parameters is emphasized. Furthermore, it is concluded that experimental investigations should follow a chemical systematic. Simple physical models or quantum chemical calculations cannot predict unknown quantities in the databases with sufficient accuracy. Finally, solubility changes in salt-water systems at enhanced temperatures are considered. Systems, which can be considered as molten hydrates, display interesting phase behavior and chemical reactivity as protic ionic liquids. The latter can be exploited in chemical syntheses to substitute mixtures of concentrated acids like HNO3/H2SO4 by simple salts like ferric nitrate. For an understanding of the chemical and phase behavior of water-salt systems in terms of structure–property relations, a renaissance of chemical guided basic investigations of such systems would be worthwhile.

References

1 M. Ladd. Chemical Bonding in Solids and Fluids, Ellis Horwood, New York (1994).Search in Google Scholar

2 W. Kunz (Ed.). Specific Ion Effects, World Scientific, Singapore (2010).10.1142/7261Search in Google Scholar

3 J. D’Ans. Die Löslichkeitsgleichgewichte der Systeme der Salze ozeanischer Salzablagerungen, Verlagsgesellschaft für Ackerbau mbH, Berlin (1933).Search in Google Scholar

4 H. Autenrieth. Kali Steinsalz2, 18 (1958).Search in Google Scholar

5 H. Autenrieth, G. Braune. Kali Steinsalz3, 395 (1959).Search in Google Scholar

6 Th. Fanghänel, H.-H. Emons. Neue Ergebnisse über die fest-flüssig Gleichgewichte der Systeme der ozeanischen Salze (T > 100 °C), Abh. Sächs. Akad. Wiss. zu Leipzig 57, 3 (1992).10.1515/9783112565308Search in Google Scholar

7a R. Beck, H.-H. Emons, H. Holldorf. Freib. Forsch. A628, 7 (1981).Search in Google Scholar

7b R. Beck, H.-H. Emons, H. Holldorf. Freib. Forsch. A628, 19 (1981).Search in Google Scholar

8 W. Voigt. Freibforsch. A853, 5 (1999).Search in Google Scholar

9 10.1351/pac200173050831, W. Voigt. Pure Appl. Chem.73, 831 (2001).Search in Google Scholar

10 10.1016/S0016-7037(03)00215-1, D. Freyer, W. Voigt. Geochim. Cosmochim. Acta68, 307 (2004).Search in Google Scholar

11 D. E. Garrett. Handbook of Lithium and Natural Calcium Chloride, Elsevier, Academic Press (2004).10.1016/B978-012276152-2/50038-4Search in Google Scholar

12 M. Steiger. Restor. Build. Monum.11, 419 (2005).10.1016/S1269-1763(05)00091-XSearch in Google Scholar

13 10.1016/j.gca.2008.05.053, M. Steiger, J. Asmussen. Geochim. Cosmochim. Acta72, 4291 (2008).Search in Google Scholar

14 10.1016/j.icarus.2010.11.025, D. Möhlmann, K. Thomsen. Icarus212, 123 (2011).Search in Google Scholar

15 10.1351/PAC-CON-09-01-02, E. Königsberger, G. Hefter, P. May. Pure Appl. Chem.81, 1537 (2009).Search in Google Scholar

16 P. Debye, E. Hückel. Phys. Z.24, 185 (1923).Search in Google Scholar

17 10.1039/tf9272300416, J. N. Brönsted. Trans. Faraday Soc.23, 416 (1927).Search in Google Scholar

18 E. A. Guggenheim. Philos. Mag.22, 322 (1936).10.1080/14786443608561690Search in Google Scholar

19 10.1039/tf9555100747, E. A. Guggenheim, J. C. Turgeon. Trans. Faraday Soc.51, 747 (1955).Search in Google Scholar

20 10.1021/j100715a013, G. Scatchard, R. M. Rush, J. S. Johnson. J. Phys. Chem.74, 3786 (1970).Search in Google Scholar

21 10.1021/j100679a023, P. J. Reilly, R. H. Wood, R. A. Robinson. J. Phys. Chem.75, 1305 (1971).Search in Google Scholar

22 K. S. Pitzer. In Activity Coefficients in Electrolyte Solutions, 2nd ed., K. S. Pitzer (Ed.), pp. 75–153, CRC Press, Boca Raton (1991).Search in Google Scholar

23 THEREDA project, <www.thereda.de>.Search in Google Scholar

24 I. Grenthe, I. Puigdomenech. Modeling in Aquatic Chemistry, NEA-OECD Publications, Paris (1997).Search in Google Scholar

25 10.1016/j.cageo.2009.09.004, S. A. Bea, J. Carrera, C. Ayora, F. Battle. Computers Geosci.36, 526 (2010).Search in Google Scholar

26 10.1351/pac200779050883, W. Voigt, V. Brendler, K. Marsh, R. Rarey, H. Wanner, M. Gaune-Escard, P. Cloke, Th. Vercouter, E. Bastrakov, S. Hagemann. Pure Appl. Chem.79, 883 (2007).Search in Google Scholar

27 10.1021/ie030514h, X. Xu, E. A. Macedo. Ind. Eng. Chem. Res.42, 5702 (2003).Search in Google Scholar

28 10.1016/j.calphad.2005.06.003, G. R. Pazuki, F. Arabgol. CALPHAD29, 125 (2005).Search in Google Scholar

29 10.1007/s10765-007-0211-1, A. Haghtalab, M. Joda. Int. J. Thermophys.28, 876 (2007).Search in Google Scholar

30 10.1016/j.jct.2010.10.004, A. Haghtalab, A. Shojaeian, S. H. Mazloumi. J. Chem. Thermodyn.43, 354 (2011).Search in Google Scholar

31 10.1021/je800965t, X. Ge, X. Wang. J. Chem. Eng. Data54, 179 (2009).Search in Google Scholar

32 C. C. Chen, H. J. Britt, J. F. Boston, L. B. Evans. AIChE J.28, 589 (1982).Search in Google Scholar

33 10.1002/aic.690390912, X. Lu, G. Maurer. AIChE J.39, 1527 (1993).Search in Google Scholar

34 10.1016/0378-3812(96)83887-8, X. Lu, L. Zhang, Y. Wang, J. Shi. Fluid Phase Equilib.116, 201 (1996).Search in Google Scholar

35 10.1002/aic.690481125, M. C. Iliuta, K. Thomsen, P. Rasmussen. AIChE J.48, 2664 (2002).Search in Google Scholar

36 10.1016/S0378-3812(00)00450-7, A. Jaretun, G. Aly. Fluid Phase Equilib.175, 213 (2000).Search in Google Scholar

37 10.1021/ie049377u, H. Kuramochi, M. Osako, A. Kida, K. Nishimura, K. Kawamoto, Y. Asakuma, K. Fukui, K. Maeda. Ind. Eng. Chem. Res.44, 3289 (2005).Search in Google Scholar

38 H.-M. Polka, J. Li, J. Gmehling. Fluid Phase Equilib.162, 97 (1999).Search in Google Scholar

39 10.1021/ie049283k, J. Li, Y. Lin, J. Gmehling. Ind. Eng. Chem. Res.44, 1602 (2005).Search in Google Scholar

40 J. M. G. Barthel, H. Krienke, W. Kunz. Physical Chemistry of Electrolyte Solutions, Steinkopf Darmstadt, Springer, New York (1998).Search in Google Scholar

41 Z.-C. Wang. J. Chem. Eng. Data54, 187 (2009).10.1021/je800492wSearch in Google Scholar

42 10.1016/j.hydromet.2007.10.009, E. Königsberger, P. May, B. Harris. Hydrometallurgy90, 177 (2008).Search in Google Scholar

43 10.1016/j.hydromet.2007.10.007, E. Königsberger, L.-C. Königsberger, P. May, B. Harris. Hydrometallurgy90, 168 (2008).Search in Google Scholar

44 10.1351/pac198759091093, Y. Marcus. Pure Appl. Chem.59, 1093 (1987).Search in Google Scholar

45 10.1039/ft9918702995, Y. Marcus. J. Chem. Soc., Faraday Trans.87, 2995 (1991).Search in Google Scholar

46 M. W. Chase. J. Phys. Chem. Ref. Data, Monograph No. 9, NIST-JANAF Thermochemical Tables, 4th ed., ACS, AIP, NIST (1998).Search in Google Scholar

47 D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney, R. L. Nuttall. J. Phys. Chem. Ref. Data11, Suppl. 2 (1982).Search in Google Scholar

48 10.2475/ajs.281.10.1249, H. C. Helgeson, D. H. Kirkham, G. C. Flowers. Am. J. Sci.281, 1249 (1981).Search in Google Scholar

49 10.1016/0016-7037(95)00314-P, J. R. Haas, E. L. Shock, D. C. Sassani. Geochim. Cosmochim. Acta59, 4329 (1995).Search in Google Scholar

50 10.1016/0098-3004(92)90029-Q, J. W. Johnson, E. Oelkers, H. C. Helgeson. Computers Geosci.18, 899 (1992).Search in Google Scholar

51a 10.1021/jp8055398, E. Djamali, J. W. Cobble. J. Phys. Chem. B113, 2398 (2009).Search in Google Scholar PubMed

51b E. Djamali, J. W. Cobble. J. Phys. Chem. B113, 5002 (2009).10.1021/jp8055398Search in Google Scholar

51c 10.1021/jp902042b, E. Djamali, J. W. Cobble. J. Phys. Chem. B113, 10792 (2009).Search in Google Scholar PubMed

52 10.1021/jp910764n, E. Djamali, J. W. Cobble. J. Phys. Chem. B114, 3887 (2010).Search in Google Scholar PubMed

53 R. J. Fernandez-Prini, H. R. Corti, M. L. Japas. High-Temperature Aqueous Solutions: Thermodynamic Properties, CRC Press, Boca Raton, London (1992).Search in Google Scholar

54 J. Rard, R. F. Platford. In Activity Coefficients in Electrolyte Solutions, 2nd ed., K. S. Pitzer (Ed.), pp. 75–153, CRC Press, Boca Raton (1991).Search in Google Scholar

55 10.1006/jcht.2000.0731, A. Apelblat, E. Korin. J. Chem. Thermodyn.33, 113 (2001).Search in Google Scholar

56 10.1016/j.jct.2006.12.010, A. Apelblat, E. Korin. J. Chem. Thermodyn.39, 1065 (2007).Search in Google Scholar

57 10.1016/j.jct.2004.12.009, M. Gruszkiewicz, J. M. Simonson. J. Chem. Thermodyn.37, 906 (2005).Search in Google Scholar

58 J. N. Butler, R. N. Roy. In Activity Coefficients in Electrolyte Solutions, 2nd ed., K. S. Pitzer (Ed.), pp. 75–153, CRC Press, Boca Raton (1991).Search in Google Scholar

59 10.1021/ja01304a004, W. J. Hamer. J. Am. Chem. Soc.57, 9 (1935).Search in Google Scholar

60 10.1016/0021-9614(77)90222-1, G. M. Giordano, P. Longhi, T. Mussini, S. Rondinini. J. Chem. Thermodyn.9, 997 (1977).Search in Google Scholar

61 Z. Jun, G. Shi-Yang, X. Shu-Ping. J. Chem. Thermodyn.35, 1383 (2003).Search in Google Scholar

62 10.1016/j.jct.2005.10.010, M. J. V. Lourenco, F. J. V. Santos, M. L. V. Ramires, C. A. Nieto de Castro. J. Chem. Thermodyn.38, 970 (2006).Search in Google Scholar

63 10.1016/j.gca.2010.01.002, S. Schrödle, E. Königsberger, P. M. May, G. Hefter. Geochim. Cosmochim. Acta74, 2368 (2010).Search in Google Scholar

64 10.1016/0021-9614(81)90004-5, D. Smith-Magowan, R. H. Wood. J. Chem. Thermodyn.13, 1047 (1981).Search in Google Scholar

65 10.1016/j.jct.2006.09.008, J. S. Jones, S. P. Ziemer, B. R. Browns, E. M. Woolley. J. Chem. Thermodyn.39, 550 (2007).Search in Google Scholar

66 10.1016/j.jct.2004.08.010, A. W. H. Hakin, J. L. Liu, K. Erickson, J.-V. Munoz, J. A. Rard. J. Chem. Thermodyn.37, 153 (2005).Search in Google Scholar

67 10.1021/je0302194, Ch. S. Oakes, J. A. Rard, D. G. Archer. J. Chem. Eng. Data49, 313 (2004).Search in Google Scholar

68 10.1016/S0040-6031(99)00428-1, K. Ballerat-Busserolles, M. L. Origlia, E. M. Woolley. Thermochim. Acta347, 3 (2000).Search in Google Scholar

69 X. Chen, J. L. Oscarson, S. E. Gillespie, R. M. Izatt. Thermochim. Acta11, 285 (1996).10.1016/0040-6031(96)02877-8Search in Google Scholar

70 10.1006/jcht.2001.0754, D. A. Polya, E. M. Woolley, J. M. Simonson, R. E. Mesmer. J. Chem. Thermodyn.33, 205 (2001).Search in Google Scholar

71 10.1016/0040-6031(90)80301-E, G. del Re, G. di Giacomo, F. Fantauzzi. Thermochim. Acta161, 201 (1990).Search in Google Scholar

72 10.1016/0040-6031(87)88190-X, G. Wolf, H. Jahn. Thermochim. Acta116, 291 (1987).Search in Google Scholar

73 10.1016/S0009-2541(98)00069-2, L.-O. Öhman. Chem. Geol.151, 41 (1998).Search in Google Scholar

74 10.1039/b906803a, J. Szilágyi, E. Königsberger, P. M. May. Dalton Trans. 7717 (2009).Search in Google Scholar

75 10.1016/S0016-7037(98)00084-2, J. Bebie, T. M. Seward, J. K. Hovey. Geochim. Cosmochim. Acta62, 1643 (1998).Search in Google Scholar

76 10.1016/S0016-7037(01)00614-7, J. Brugger, D. C. McPhail, J. Black, L. Spiccia. Geochim. Cosmochim. Acta65, 2691 (2001).Search in Google Scholar

77 10.1007/s00706-009-0188-5, T. Gajda, P. Sipos, H. Gamsjäger. Monatsh. Chem.140, 1293 (2009).Search in Google Scholar

78 10.1016/j.talanta.2006.02.008, P. Sipos, G. Hefter, P. M. May. Talanta70, 761 (2006).Search in Google Scholar

79 10.1039/b713254a, W. W. Rudolph, G. Irmer, E. Königsberger. Dalton Trans. 900 (2008).Search in Google Scholar

80 G. T. Hefter, R. P. T. Tomkins (Eds.). The Experimental Determination of Solubilities, Wiley Series of Solution Chemistry, Vol. 6, John Wiley, New York (2003).10.1002/0470867833Search in Google Scholar

81 10.1002/zaac.19050470116, J. H. Van’t Hoff. Z. Anorg. Chem.47, 244 (1905).Search in Google Scholar

82 H. S. Van Klooster. J. Phys. Chem.106, 93 (1917).Search in Google Scholar

83 10.1016/0016-7037(84)90098-X, Ch. E. Harvie, N. Möller, J. H. Weare. Geochim. Cosmochim. Acta48, 723 (1984).Search in Google Scholar

84 10.1021/j150075a002, F. K. Cameron, J. M. Bell. J. Phys. Chem.10, 202 (1906).Search in Google Scholar

85 A. S. Kolosov. Trud. Khim.-Metallug. Inst., Sap.-Sibirsk. Filial. Akad. Nauk. SSSR35, 35 (1958).Search in Google Scholar

86 G. Wollmann. Crystallization filed of Polyhalite and its Heavy Metal Analogues, Dissertation, TU Bergakademie Freiberg (2010).Search in Google Scholar

87 10.1016/0022-4596(84)90240-8, Ch. Balarew, R. Duhlev. J. Solid State Chem.55, 1 (1984).Search in Google Scholar

88 10.1130/G22678A.1, R. C. Peterson, R. Wang. Geology34, 957 (2006).Search in Google Scholar

89 10.1021/cg060794e, F. E. Genceli, M. Lutz, A. L. Spek, G.-J. Witkamp. Cryst. Growth Des.7, 2460 (2007).Search in Google Scholar

90 P. D. Robinson, J. H. Fang, Y. Ohya. Am. Mineral.57, 1325 (1972).Search in Google Scholar

91 J. H. Fang, P. D. Robinson. Am. Mineral.55, 378 (1970).Search in Google Scholar

92 10.1021/je100543c, H. D. B. Jenkins, L. Glasser, J. F. Liebman. J. Chem. Eng. Data55, 4369 (2010).Search in Google Scholar

93 10.1021/je100383t, H. D. B. Jenkins, L. Glasser. J. Chem. Eng. Data55, 4231 (2010).Search in Google Scholar

94 10.1021/ic020222t, H. D. B. Jenkins, L. Glasser. Inorg. Chem.41, 4378 (2002).Search in Google Scholar

95 10.2138/am.2010.3244, C. H. Yoder, N. R. Gotlieb, A. N. Rowand. Am. Mineral.95, 47 (2010).Search in Google Scholar

96 10.2138/am.2006.2073, C. H. Yoder, J. P. Rowand. Am. Mineral.91, 747 (2006).Search in Google Scholar

97 10.1002/1521-3757(20021018)114:20<3896::AID-ANGE3896>3.0.CO;2-Z, M. Jansen. Angew. Chem.114, 3896 (2002).Search in Google Scholar

98 10.1002/zaac.201000093, I. V. Pentin, J. C. Schön, M. Jansen. Z. Anorg. Allg. Chem.636, 1703 (2010).Search in Google Scholar

99 10.1154/1.2840634, V. B. Nalbandyan. Powder Diffr.23, 52 (2008).Search in Google Scholar

100 10.1016/j.fluid.2009.12.008, G. Wollmann, W. Voigt. Fluid Phase Equilib.291, 76 (2010).Search in Google Scholar

101 V. M. Valyashko. Phase Equilibria and Properties of Hydrothermal Systems, Nauka, Moscow (1992).Search in Google Scholar

102 10.1016/S0016-7037(03)00215-1, D. Freyer, W. Voigt. Geochim. Cosmochim. Acta68, 307 (2004).Search in Google Scholar

103 H.-H. Emons, Th. Fanghänel, W. Voigt. Salzhydratschmelzen: Ein Bindeglied zwischen Elektrolytlösungen und Salzschmelzen, Sitzungsber. AdW DDR 3N Akademieverlag, Berlin (1986).Search in Google Scholar

104 10.3891/acta.chem.scand.40a-0354, W. Voigt, P. Klæboe. Acta Chem. Scand.A40, 354 (1986).Search in Google Scholar

105 10.1002/zaac.19895760112, Th. Fanghänel, H.-H. Emons, K. Köhnke. Z. Anorg. Allg. Chem.576, 99 (1989).Search in Google Scholar

106 10.1006/jcht.1997.0278, M. R. Ally, J. Braunstein. J. Chem. Thermodyn.30, 49 (1998).Search in Google Scholar

107 M. R. Ally. J. Chem. Eng. Data54, 411 (2009).10.1021/je8004497Search in Google Scholar

108 10.1006/jcht.2001.0869, S. L. Clegg, J. M. Simonson. J. Chem. Thermodyn.33, 1457 (2001).Search in Google Scholar

109 10.1351/pac200274101909, W. Voigt, D. Zeng. Pure Appl. Chem.74, 1909 (2002).Search in Google Scholar

110 10.1016/j.calphad.2003.09.004, D. Zeng, W. Voigt. CALPHAD27, 243 (2003).Search in Google Scholar

111 10.1007/s10953-005-3051-2, Y. Marcus. J. Solution Chem.34, 307 (2005).Search in Google Scholar

112 W. Voigt, K. Hettrich, D. Zeng. “Ion coordination and thermodynamic modeling of molten salt hydrate mixtures”, in Thermodynamic Properties of Complex Fluid Mixtures, G. Maurer (Ed.), pp. 241–266, Wiley-VCH, Weinheim (2004).Search in Google Scholar

113 10.1021/j100369a082, S. K. Franzyshen, M. D. Schiavelli, K. D. Stocker, M. D. Ingram. J. Phys. Chem.94, 2684 (1990).Search in Google Scholar

114 10.1021/j100634a011, E. J. Sare, C. T. Moynihan, C. A. Angell. J. Phys. Chem.77, 1869 (1973).Search in Google Scholar

115 W. Mackenroth, J. Büttner, E. Ströfer, W. Voigt, F. Bok. Verfahren zur Herstellung von nitrierten Aromaten und deren Mischungen, WO 2010/097453 A1.Search in Google Scholar


Conference

International Symposium on Solubility Phenomena and Related Equilibrium Processes (ISSP-14), International Symposium on Solubility Phenomena, ISSP, Solubility Phenomena, 14th, Leoben, Austria, 2010-07-25–2010-07-30


Online erschienen: 2011-4-4
Erschienen im Druck: 2011-4-4

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1351/PAC-CON-11-01-07/html
Scroll to top button