Skip to content
Publicly Available Published by De Gruyter January 4, 2013

Multiscale modeling of solvation in chemical and biological nanosystems and in nanoporous materials

  • Andriy Kovalenko

Statistical–mechanical, 3D-RISM-KH molecular theory of solvation (3D reference interaction site model with the Kovalenko–Hirata closure) is promising as an essential part of multiscale methodology for chemical and biomolecular nanosystems in solution. 3D-RISM-KH explains the molecular mechanisms of self-assembly and conformational stability of synthetic organic rosette nanotubes (RNTs), aggregation of prion proteins and β-sheet amyloid oligomers, protein-ligand binding, and function-related solvation properties of complexes as large as the Gloeobacter violaceus pentameric ligand-gated ion channel (GLIC) and GroEL/ES chaperone. Molecular mechanics/Poisson–Boltzmann (generalized Born) surface area [MM/PB(GB)SA] post-processing of molecular dynamics (MD) trajectories involving SA empirical nonpolar terms is replaced with MM/3D-RISM-KH statistical–mechanical evaluation of the solvation thermodynamics. 3D-RISM-KH has been coupled with multiple time-step (MTS) MD of the solute biomolecule driven by effective solvation forces, which are obtained analytically by converging the 3D-RISM-KH integral equations at outer time-steps and are calculated in between by using solvation force coordinate extrapolation (SFCE) in the subspace of previous solutions to 3D-RISM-KH. The procedure is stabilized by the optimized isokinetic Nosé–Hoover (OIN) chain thermostatting, which enables gigantic outer time-steps up to picoseconds to accurately calculate equilibrium properties. The multiscale OIN/SFCE/3D-RISM-KH algorithm is implemented in the Amber package and illustrated on a fully flexible model of alanine dipeptide in aqueous solution, exhibiting the computational rate of solvent sampling 20 times faster than standard MD with explicit solvent. Further substantial acceleration can be achieved with 3D-RISM-KH efficiently sampling essential events with rare statistics such as exchange and localization of solvent, ions, and ligands at binding sites and pockets of the biomolecule. 3D-RISM-KH was coupled with ab initio complete active space self-consistent field (CASSCF) and orbital-free embedding (OFE) Kohn–Sham (KS) density functional theory (DFT) quantum chemistry methods in an SCF description of electronic structure, optimized geometry, and chemical reactions in solution. The (OFE)KS-DFT/3D-RISM-KH multi-scale method is implemented in the Amsterdam Density Functional (ADF) package and extensively validated against experiment for solvation thermochemistry, photochemistry, conformational equilibria, and activation barriers of various nanosystems in solvents and ionic liquids (ILs). Finally, the replica RISM-KH-VM molecular theory for the solvation structure, thermodynamics, and electrochemistry of electrolyte solutions sorbed in nanoporous materials reveals the molecular mechanisms of sorption and supercapacitance in nanoporous carbon electrodes, which is drastically different from a planar electrical double layer.


Conference

International Conference on Solution Chemistry (ICSC-32), International Conference on Solution Chemistry, ICSC, Solution Chemistry, 32nd, La Grande Motte, France, 2011-08-28–2011-09-02


References

1 J.-P. Hansen, I. McDonald. Theory of Simple Liquids, 3rd ed., Elsevier, Amsterdam (2006).Search in Google Scholar

2 F. Hirata (Ed.). Molecular Theory of Solvation, Series: Understanding Chemical Reactivity, P. G. Mezey (Ed.), Vol. 24, p. 360, Kluwer Academic, Dordrecht (2003).10.1007/1-4020-2590-4Search in Google Scholar

3 10.1063/1.451510, D. Chandler, J. McCoy, S. Singer. J. Chem. Phys.85, 5971 (1986).Search in Google Scholar

4 10.1063/1.451511, D. Chandler, J. McCoy, S. Singer. J. Chem. Phys.85, 5977 (1986).Search in Google Scholar

5 10.1063/1.469602, D. Beglov, B. Roux. J. Chem. Phys.103, 360 (1995).Search in Google Scholar

6 10.1021/jp971083h, D. Beglov, B. Roux. J. Phys. Chem. B101, 7821 (1997).Search in Google Scholar

7 10.1016/S0009-2614(98)00471-0, A. Kovalenko, F. Hirata. Chem. Phys. Lett.290, 237 (1998).Search in Google Scholar

8 10.1063/1.478883, A. Kovalenko, F. Hirata. J. Chem. Phys.110, 10095 (1999).Search in Google Scholar

9 10.1063/1.481676, A. Kovalenko, F. Hirata. J. Chem. Phys.112, 10391 (2000).Search in Google Scholar

10 10.1063/1.481677, A. Kovalenko, F. Hirata. J. Chem. Phys.112, 10403 (2000).Search in Google Scholar

11 A. Kovalenko. “Three-dimensional RISM theory for molecular liquids and solid-liquid inter-faces”, in Molecular Theory of Solvation, F. Hirata (Ed.), Series: Understanding Chemical Reactivity, Vol. 24, pp. 169–275, Kluwer, Dordrecht (2003).10.1007/1-4020-2590-4_4Search in Google Scholar

12 10.1063/1.481564, H. Sato, A. Kovalenko, F. Hirata. J. Chem. Phys.112, 9463 (2000).Search in Google Scholar

13 10.1021/jp054344t, S. Gusarov, T. Ziegler, A. Kovalenko. J. Phys. Chem. A110, 6083 (2006).Search in Google Scholar

14 10.1021/ct6001785, D. Casanova, S. Gusarov, A. Kovalenko, T. Ziegler. J. Chem. Theory Comput.3, 458 (2007).Search in Google Scholar

15 10.1021/jp100158h, J. W. Kaminski, S. Gusarov, T. A. Wesolowski, A. Kovalenko. J. Phys. Chem. A114, 6082 (2010).Search in Google Scholar

16 10.1021/jp810887z, M. Malvaldi, S. Bruzzone, C. Chiappe, S. Gusarov, A. Kovalenko. J. Phys. Chem. B113, 3536 (2009).Search in Google Scholar

17 10.1016/S0009-2614(01)01241-6, A. Kovalenko, F. Hirata. Chem. Phys. Lett.349, 496 (2001).Search in Google Scholar

18 10.1142/S0219633602000282, A. Kovalenko, F. Hirata. J. Theor. Comput. Chem.1, 381 (2002).Search in Google Scholar

19 10.1021/ja051496t, J. G. Moralez, J. Raez, T. Yamazaki, R. K. Motkuri, A. Kovalenko, H. Fenniri. J. Am. Chem. Soc.127, 8307 (2005).Search in Google Scholar PubMed

20 10.1021/ja0706192, R. S. Johnson, T. Yamazaki, A. Kovalenko, H. Fenniri. J. Am. Chem. Soc.129, 5735 (2007).Search in Google Scholar PubMed

21 10.1021/la8001114, G. Tikhomirov, T. Yamazaki, A. Kovalenko, H. Fenniri. Langmuir24, 4447 (2007).Search in Google Scholar PubMed

22 10.1002/cphc.200900324, T. Yamazaki, H. Fenniri, A. Kovalenko. ChemPhysChem11, 361 (2010).Search in Google Scholar PubMed

23 10.1021/ja908775g, R. Chhabra, J. Moralez, J. Raez, T. Yamazaki, J.-Y. Cho, A. Myles, A. Kovalenko, H. Fenniri. J. Am. Chem. Soc. Commun.132, 32 (2010).Search in Google Scholar PubMed PubMed Central

24 10.1021/ja054434b, T. Imai, R. Hiraoka, A. Kovalenko, F. Hirata. J. Am. Chem. Soc. Commun.127, 15334 (2005).Search in Google Scholar PubMed

25 10.1021/jp807068k, N. Yoshida, T. Imai, S. Phongphanphanee, A. Kovalenko, F. Hirata. J. Phys. Chem. B (Feature Article) 113, 873 (2009).Search in Google Scholar PubMed

26 10.1021/jp2015758, T. Imai, N. Miyashita, Y. Sugita, A. Kovalenko, F. Hirata, A. Kidera. J. Phys. Chem. B115, 8288 (2011).Search in Google Scholar PubMed

27 10.1529/biophysj.107.123000, T. Yamazaki, N. Blinov, D. Wishart, A. Kovalenko. Biophys. J.95, 4540 (2008).Search in Google Scholar PubMed PubMed Central

28 10.1016/j.bpj.2009.09.062, N. Blinov, L. Dorosh, D. Wishart, A. Kovalenko. Biophys. J.98, 282 (2010).Search in Google Scholar PubMed PubMed Central

29 10.1080/08927022.2010.544306, N. Blinov, L. Dorosh, D. Wishart, A. Kovalenko. Mol. Simul.37, 718 (2011).Search in Google Scholar

30 10.1016/j.molliq.2011.09.011, A. Kovalenko, N. Blinov. J. Mol. Liq.164, 101 (2011).Search in Google Scholar

31 10.1021/ct300257v, D. Nikolic, N. Blinov, D. Wishart, A. Kovalenko. J. Chem. Theory Comput.8, 3356 (2012).Search in Google Scholar PubMed

32 10.1021/jp102587q, M. C. Stumpe, N. Blinov, D. Wishart, A. Kovalenko, V. S. Pande. J. Phys. Chem. B115, 205 (2011).Search in Google Scholar

33 10.1039/c1sm06542d, A. Kovalenko, A. E. Kobryn, S. Gusarov, O. Lyubimova, X. Liu, N. Blinov, M. Yoshida. Soft Matter8, 1508 (2012).Search in Google Scholar

34 10.1021/jp013400x, K. Yoshida, T. Yamaguchi, A. Kovalenko, F. Hirata. J. Phys. Chem. B106, 5042 (2002).Search in Google Scholar

35 10.1142/S0219633603000501, I. Omelyan, A. Kovalenko, F. Hirata. J. Theor. Comput. Chem.2, 193 (2003).Search in Google Scholar

36 10.1039/b416615a, A. Kovalenko, F. Hirata. Phys. Chem. Chem. Phys.7, 1785 (2005).Search in Google Scholar

37 A. Kovalenko, F. Hirata. “A molecular theory of solutions at liquid interfaces”, in Interfacial Nanochemistry: Molecular Science and Engineering at Liquid-Liquid Interfaces, H. Watarai (Ed.), Series: Nanostructure Science and Technology, D. J. Lockwood (Ed.), pp. 97–125, Springer (2005).10.1007/0-387-27541-X_5Search in Google Scholar

38 10.1063/1.463485, J. S. Perkyns, B. M. Pettitt. J. Chem. Phys.97, 7656 (1992).Search in Google Scholar

39 10.1007/BF01438859, B. Kvamme. Int. J. Thermophys.16, 743 (1995).Search in Google Scholar

40 10.1063/1.1748352, J. G. Kirkwood, F. P. Buff. J. Chem. Phys.19, 774 (1951).Search in Google Scholar

41 10.1063/1.1369138, Y. Harano, T. Imai, A. Kovalenko, M. Kinoshita, F. Hirata. J. Chem. Phys.114, 9506 (2001).Search in Google Scholar

42 10.1002/1097-0282(200112)59:7<512::AID-BIP1056>3.0.CO;2-C, T. Imai, Y. Harano, A. Kovalenko, F. Hirata. Biopolymers59, 512 (2001).Search in Google Scholar

43 10.1021/ct9000729, T. Yamazaki, A. Kovalenko. J. Chem. Theory Comput.5, 1723 (2009).Search in Google Scholar

44 10.1021/jp1082938, T. Yamazaki, A. Kovalenko. J. Phys. Chem. B115, 310 (2011).Search in Google Scholar

45 10.1021/ja905029t, T. Imai, K. Oda, A. Kovalenko, F. Hirata, A. Kidera. J. Am. Chem. Soc.131, 12430 (2009).Search in Google Scholar

46 10.1002/jcc.22974, S. Gusarov, B. S. Pujari, A. Kovalenko. J. Comput. Chem.33, 1478 (2012).Search in Google Scholar

47 10.1002/(SICI)1096-987X(19990715)20:9<928::AID-JCC4>3.0.CO;2-X, A. Kovalenko, S. Ten-no, F. Hirata. J. Comput. Chem.20, 928 (1999).Search in Google Scholar

48 10.1016/0009-2614(80)80396-4, P. Pulay. Chem. Phys. Lett.73, 393 (1980).Search in Google Scholar

49 10.1137/0907058, Y. Saad, M. H. Schultz. J. Sci. Stat. Comput.7, 856 (1986).Search in Google Scholar

50 10.1021/ct8002817, J. J. Howard, J. S. Perkyns, N. Choudhury, B. M. Pettitt. J. Chem. Theory Comput.4, 1928 (2008).Search in Google Scholar

51 10.1063/1.2431809, N. Minezawa, S. Kato. J. Chem. Phys.126, 054511 (2007).Search in Google Scholar

52 10.1073/pnas.0600118103, J. A. Wagoner, N. A. Baker. Proc. Natl. Acad. Sci. USA103, 8331 (2006).Search in Google Scholar

53 10.1021/ja029833a, R. M. Levy, L. Y. Zhang, A. K. Felts. J. Am. Chem. Soc.125, 9523 (2003).Search in Google Scholar

54 10.1002/jcc.10379, H. Gohlke, D. A. Case. J. Comput. Chem.25, 238 (2004).Search in Google Scholar

55 10.1021/jp984327m, K. Lum, D. Chandler, J. Weeks. J. Phys. Chem. B103, 4570 (1999).Search in Google Scholar

56 10.1016/0301-0104(73)80059-X, E. J. Baerends, P. Ros, D. E. Ellis. Chem. Phys.2, 41 (1973).Search in Google Scholar

57 10.1002/jcc.1056, G. te Velde, F. Bickelhaupt, S. van Gisbergen, C. Guerra, E. Baerends, J. Snijders, T. Ziegler. J. Comput. Chem.22, 931 (2001).Search in Google Scholar

58 C. F. Guerra, J. Snijders, G. te Velde, E. Baerends. Theor. Chem. Acc.99, 391 (1998).10.1007/s002140050021Search in Google Scholar

59 10.1021/j100132a040, T. A. Wesolowski, A. Warshel. J. Phys. Chem.97, 8050 (1993).Search in Google Scholar

60 10.1063/1.454603, L. Versluis, T. Ziegler. J. Chem. Phys.88, 322 (1988).Search in Google Scholar

61 10.1002/jcc.20844, T. Miyata, F. Hirata. J. Comput. Chem.29, 871 (2008).Search in Google Scholar PubMed

62 10.1063/1.3637035, I. P. Omelyan, A. Kovalenko. J. Chem. Phys.135, 114110 (2011).Search in Google Scholar PubMed

63 10.1063/1.476736, E. Barth, T. Schlick. J. Chem. Phys.109, 1617 (1998).Search in Google Scholar

64 10.1063/1.1332996, J. A. Izaguirre, D. P. Catarello, J. M. Wozniak, R. D. Skeel. J. Chem. Phys.114, 2090 (2001).Search in Google Scholar

65 10.1080/0026897021000018321, R. D. Skeel, J. A. Izaguirre. Mol. Phys.100, 3885 (2002).Search in Google Scholar

66 10.1137/S1540345903423567, Q. Ma, J. A. Izaguirre. Multiscale Model. Simul.2, 1 (2003).Search in Google Scholar

67 10.1063/1.2753496, S. Melchionna. J. Chem. Phys.127, 044108 (2007).Search in Google Scholar

68 10.1080/00268979600100761, G. J. Martyna, M. E. Tuckerman, D. J. Tobias, M. L. Klein. Mol. Phys.87, 1117 (1996).Search in Google Scholar

69 10.1021/jp990231w, A. Cheng, K. M. Merz Jr. J. Phys. Chem. B103, 5396 (1999).Search in Google Scholar

70 10.1016/S0166-1280(99)00314-0, J. Komeiji. Mol. Struct.: THEOCHEM530, 237 (2000).Search in Google Scholar

71 10.1002/jcc.10249, W. Shinoda, M. Mikami. J. Comput. Chem.24, 920 (2003).Search in Google Scholar PubMed

72 10.1063/1.3669385, I. P. Omelyan, A. Kovalenko. J. Chem. Phys.135, 234107 (2011).Search in Google Scholar PubMed

73 10.1063/1.1534582, P. Minary, G. J. Martyna, M. E. Tuckerman. J. Chem. Phys.118, 2510 (2003).Search in Google Scholar

74 10.1103/PhysRevLett.93.150201, P. Minary, M. E. Tuckerman, G. J. Martyna. Phys. Rev. Lett.93, 150201 (2004).Search in Google Scholar PubMed

75 J. B. Abrams, M. E. Tuckerman, G. J. Martyna. Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology, Vol. 1, Springer, Berlin (2006) [Lecture Notes in Physics703, 139 (2006)].Search in Google Scholar

76 10.1021/ct900460m, T. Luchko, S. Gusarov, D. R. Roe, C. Simmerling, D. A. Case, J. Tuszynski, A. Kovalenko. J. Chem. Theory Comput.6, 607 (2010).Search in Google Scholar PubMed PubMed Central

77 10.1080/08927022.2012.700486, I. P. Omelyan, A. Kovalenko. Mol. Simul. (2012).Search in Google Scholar

78 10.1038/nature07462, N. Bocquet, H. Nury, M. Baaden, C. Le Poupon, J.-P. Changeux, M. Delarue, P.-J. Corringer. Nature457, 111 (2009).Search in Google Scholar PubMed

79 10.1213/ANE.0b013e3181c4bc69, Y. Weng, L. Yang, P.-J. Corringer, J. M. Sonner. Anesthesia Analgesia110, 59 (2010).Search in Google Scholar PubMed PubMed Central

80 10.1529/biophysj.107.105478, D. Boda, W. Nonner, M. Valiskó, D. Henderson, B. Eisenberg, D. Gillespie. Biophys. J.93, 1960 (2007).Search in Google Scholar PubMed PubMed Central

81 10.1063/1.2212423, D. Boda, M. Valiskó, B. Eisenberg,W. Nonner, D. Henderson, D. Gillespie. J. Chem. Phys.125, 034901 (2006).Search in Google Scholar PubMed

82 10.1103/PhysRevLett.98.168102, D. Boda, M. Valiskó, B. Eisenberg, W. Nonner, D. Henderson, D. Gillespie. Phys. Rev. Lett.98, 168102 (2007).Search in Google Scholar PubMed

83 10.1021/j100188a054, D. J. Tobias, C. L. Brooks III. J. Phys. Chem.96, 3864 (1992).Search in Google Scholar

84 10.1021/jp048540w, D. S. Chekmarev, T. Ishida, R. M. Levy. J. Phys. Chem. B108, 19487 (2004).Search in Google Scholar

85 10.1063/1.1409954, A. Kovalenko, F. Hirata. J. Chem. Phys.115, 8620 (2001).Search in Google Scholar

86 A. Kovalenko, F. Hirata. Condensed Matter Phys.4, 643 (2001).10.5488/CMP.4.4.643Search in Google Scholar

87 10.1016/S0009-2614(03)01336-8, A. Tanimura, A. Kovalenko, F. Hirata. Chem. Phys. Lett.378, 638 (2003).Search in Google Scholar

88 10.1166/jctn.2004.038, A. Kovalenko. J. Comput. Theor. Nanosci.1, 398 (2004).Search in Google Scholar

89 10.1021/la061617i, A. Tanimura, A. Kovalenko, F. Hirata. Langmuir23, 1507 (2007).Search in Google Scholar

90 10.1103/PhysRevA.45.816, J. Given. Phys. Rev. A45, 816 (1992).Search in Google Scholar

91 10.1063/1.463883, J. Given, G. Stell. J. Chem. Phys.97, 4573 (1992).Search in Google Scholar

92 10.1016/0378-4371(94)90200-3, J. Given, G. Stell. Physica A209, 495 (1994).Search in Google Scholar

93 J. Given, G. Stell. In Condensed Matter Theories, Vol. 8, L. Blum, F. B. Malik (Eds.), pp. 395–410, Plenum, New York (1993).10.1007/978-1-4615-2934-7_35Search in Google Scholar

94 10.1063/1.463379, L. L. Lee. J. Chem. Phys.97, 8606 (1992).Search in Google Scholar

95 M. Endo, T. Takeda, Y. J. Kim, K. Koshiba, K. Ishii. Carbon Sci.1, 117 (2001).10.7209/tanso.2001.14Search in Google Scholar

Online erschienen: 2013-1-4
Erschienen im Druck: 2013-1-4

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.5.2024 from https://www.degruyter.com/document/doi/10.1351/PAC-CON-12-06-03/html
Scroll to top button