Skip to content
Publicly Available Published by De Gruyter January 1, 2009

Synthesis and properties of annulenic subunits of graphyne and graphdiyne nanoarchitectures

  • Michael M. Haley

Abstract

This report describes the synthetic strategies toward and optoelectronic properties of substructures of the non-natural, planar carbon networks graphyne and graphdiyne, which are based on the dehydrobenzo[12]annulene and dehydrobenzo[18]annulene framework, respectively.


Conference

International Symposium on Novel Aromatic Compounds (ISNA-12), International Symposium on Novel Aromatic Compounds, ISNA, Novel Aromatic Compounds, 12th, Awaji Island, Japan, 2007-07-22–2007-07-27


References

1. (a) R. E. Kirk, D. F. Othmer, M. Grayson, D. Eckroth. Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed. 1978-1984, Vol. 4, p. 556, John Wiley, New York (1978);Search in Google Scholar

1. (b) B. T. Kelly. Physics of Graphite, Applied Science Publishers, New Jersey (1981);Search in Google Scholar

1. (c) J. E. Fields (Ed.). The Properties of Diamond, Academic Press, London (1979).Search in Google Scholar

2. (a) E. Fitzer (Ed.). Carbon Fibers and Their Composites, Springer, Berlin (1985);10.1007/978-3-642-70725-4Search in Google Scholar

2. (b) M. C. Reisch. Chem. Eng. News 65, 9 (1987);10.1021/cen-v065n007.p009Search in Google Scholar

2. (c) A. M. Thayer. Chem. Eng. News 68, 37 (1990);10.1021/cen-v068n030.p037Search in Google Scholar

2. (d) Carbon Vol. 27, Issue 5 (1989);Search in Google Scholar

2. (e) J. B. Donnet, R. C. Bosnsal. Carbon Fibers, Marcel Dekker, New York (1984);Search in Google Scholar

2. (f) J. Delmonte. Technology of Carbon and Graphite Fiber Composites, Van Nostrand-Reinhold, Princeton (1981);Search in Google Scholar

2. (g) G. M. Jenkins, K. Kawamura. Polymeric Carbons: Carbon Fibre, Glass and Char, University Press, Cambridge (1976).Search in Google Scholar

3. (a) doi:10.1145/71575.71576, P. K. Bachman, R. Messier. Chem. Eng. News 67, 24 (1989);Search in Google Scholar

3. (b) M. Simpson. New Sci. 117, 50 (1988).10.1016/0300-483X(88)90126-6Search in Google Scholar

4. A. T. Balaban, C. C. Rentia, E. Ciupitu. Rev. Roum. Chim. 13, 231 (1968).Search in Google Scholar

5. (a) doi:10.1021/ja00352a049, R. Hoffmann, T. Hughbanks, M. Kertesz, P. H. Bird. J. Am. Chem. Soc. 105, 4831 (1983);Search in Google Scholar

5. (b) doi:10.1021/ja00185a004, R. L. Johnston, R. Hoffmann. J. Am. Chem. Soc. 111, 810 (1989);Search in Google Scholar

5. (c) doi:10.1016/0898-1221(89)90170-3, A. T. Balaban. Comput. Math. Appl. 17, 397 (1989);Search in Google Scholar

5. (d) doi:10.1038/365735a0, R. H. Baughman, D. S. Galvao. Nature 365, 735 (1993);Search in Google Scholar

5. (e) doi:10.1021/ja00141a017, S. A. Best, P. A. Bianconi, K. M. Merz Jr. J. Am. Chem. Soc. 117, 9251 (1995);Search in Google Scholar

5. (f) D. J. Klein, H. Zhu. In From Chemical Topology to Three-Dimensional Geometry, A. T. Balaban (Ed.), p. 297, Plenum Press, New York (1997);Search in Google Scholar

5. (g) A. T. Balaban. In Theoretical Organic Chemistry, C.Parkanyi (Ed.), Elsevier, Amsterdam (1998).Search in Google Scholar

6. doi:10.1038/347354a0, W. Kratschmer, L. D. Lamb, K. Fostiropoulos, D. R. Huffman. Nature 347, 354 (1990).Search in Google Scholar

7. doi:10.1038/318162a0, H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, R. E. Smalley. Nature 318, 162 (1985).Search in Google Scholar

8. doi:10.1021/ar00015a008, J. M. Hawkins. Acc. Chem. Res. 25, 150 (1992).Search in Google Scholar

9. (a) doi:10.1002/anie.200500805, A. C. Grimsdale, K. Mullen. Angew. Chem., Int. Ed. 44, 5592 (2005);Search in Google Scholar

9. (b) doi:10.1039/a708900g, U. H. F. Bunz, Y. Rubin, Y. Tobe. Chem. Soc. Rev. 28, 107 (1999);Search in Google Scholar

9. (c) Y. Rubin. Chem.Eur. J. 3, 1009 (1997); (c) U. H. F. Bunz. Synlett 1117 (1997);Search in Google Scholar

9. (d) doi:10.1038/369199a0, F. Diederich. Nature 369, 199 (1994).Search in Google Scholar

10. doi:10.1063/1.453405, R. H. Baughman, H. Eckhardt, M. J. Kertesz. J. Chem. Phys. 87, 6687 (1987).Search in Google Scholar

11. (a) doi:10.1103/PhysRevB.58.11009, N. Narita, S. Nagai, S. Suzuki, K. Nakao. Phys. Rev. B 58, 11009 (1998);Search in Google Scholar

11. (b) doi:10.1103/PhysRevB.62.11146, N.Narita, S. Nagai, S. Suzuki, K. Nakao. Phys. Rev. B 62, 11146 (2000);Search in Google Scholar

11. (c) doi:10.1103/PhysRevB.64.245408, N. Narita, S. Nagai, S. Suzuki. Phys. Rev. B 64, 245408 (2001);Search in Google Scholar

11. (d) doi:10.1016/S0038-1098(02)00156-4, Y. Zhou, S. Feng. Solid State Commun. 122, 307 (2002);Search in Google Scholar

11. (e) doi:10.1021/jo0622781, K. Tahara, T. Yoshimura, M. Sonoda, Y. Tobe, R. V. Williams. J. Org. Chem. 72, 1437 (2007).Search in Google Scholar

12. (a) doi:10.1002/anie.199200631, H.-D. Beckhaus, C. Ruckhardt, M. Kao, F. Diederich, C. S. Foote. Angew. Chem., Int. Ed. Engl. 31, 63 (1992);Search in Google Scholar

12. (b) doi:10.1002/anie.199409961, H.-D. Beckhaus, S. Verevkin, C. Ruckhardt, F. Diederich, C. Thilgen, H.U. ter Meer, H. Mohn, W. Muller. Angew. Chem., Int. Ed. Engl. 33, 996 (1994).Search in Google Scholar

13. doi:10.1002/anie.199618001, Y. Tobe, H. Matsumoto, K. Naemura, Y. Achiba, T. Wakabayashi. Angew. Chem., Int. Ed. Engl. 35, 1800 (1996).Search in Google Scholar

14. doi:10.1002/anie.198602681, R. Diercks, J. Armstrong, R. Boese, K. P. C. Vollhardt. Angew. Chem., Int. Ed. Engl. 25, 268 (1986).Search in Google Scholar

15. (a) doi:10.1002/anie.199001771, K. Praefcke, B. Kohne, D. Singer. Angew. Chem., Int. Ed. Engl. 29, 177 (1990);Search in Google Scholar

15. (b) doi:10.1039/c39950000055, K. Kondo, S. Yasuda, T. Sakaguchi, M. Miya. J. Chem. Soc., Chem. Commun. 55 (1995).Search in Google Scholar

16. doi:10.1016/S0040-4039(97)00712-0, J. E. Anthony, S. I. Khan, Y. Rubin. Tetrahedron Lett. 38, 3499 (1997).Search in Google Scholar

17. (a) doi:10.1021/jo970309+, Y. Tobe, K. Kubota, K. Naemura. J. Org. Chem. 62, 3430 (1997);Search in Google Scholar

17. (b) doi:10.1021/jo970368n, J. D. Tovar, N. Jux, T.Jarrosson, S. I. Khan, Y. Rubin. J. Org. Chem. 62, 3432 (1997).Search in Google Scholar

18. doi:10.1002/ejoc.200200630, J. A. Marsden, G. J. Palmer, M. M. Haley. Eur. J. Org. Chem. 2355 (2003).Search in Google Scholar

19. (a) C. S. Jones, M. J. O'Connor, M. M. Haley. In Acetylene Chemistry: Chemistry, Biology, and Materials Science, F. Diederich, P. J. Stang, R. R. Tykwinski (Eds.), p. 303, Wiley-VCH, Weinheim (2005);Search in Google Scholar

19. (b) doi:10.1021/cr050541c, E. L. Spitler, C. A. Johnson II, M. M. Haley. Chem. Rev. 106, 5344 (2006).Search in Google Scholar

20. (a) I. D. Campbell, G. Eglinton, W. Henderson, R. A. Raphael. J. Chem. Soc., Chem. Commun. 87 (1966);Search in Google Scholar

20. (b) doi:10.1016/S0040-4039(00)90258-2, H. A. Staab, F. Graf. Tetrahedron Lett. 751 (1966).Search in Google Scholar

21. doi:10.1002/9780470132623.ch19, D. Solooki, J. D. Ferrara, D. Malaba, J. D. Bradshaw, C. A. Tessier, W. J. Youngs. Inorg. Synth. 31, 122 (1997).Search in Google Scholar

22. doi:10.1021/ol005623w, J. M. Kehoe, J. H. Kiley, J. J. English, C. A. Johnson, R. C. Petersen, M. M. Haley. Org. Lett. 2, 969 (2000).Search in Google Scholar

23. (a) O. S. Miljanic, K. P. C. Vollhardt, G. D. Whitener. Synlett 29 (2003);Search in Google Scholar

23. (b) doi:10.1055/s-2004-822393, M. Iyoda, S.Sirinintasak, Y. Nishiyama, A. Vorasingha, F. Sultana, K. Nakao, Y. Kuwatani, H. Matsuyama, M. Yoshida, Y. Miyake. Synthesis 1527 (2004).Search in Google Scholar

24. (a) doi:10.1016/0277-5387(95)85005-8, R. R. Schrock. Polyhedron 14, 3177 (1995);Search in Google Scholar

24. (b) doi:10.1002/adsc.200600476, W. Zhang, J. S. Moore. Adv. Synth. Catal. 349, 93 (2007).Search in Google Scholar

25. doi:10.1021/ol7014253, C. A. Johnson II, Y. Lu, M. M. Haley. Org. Lett. 9, 3725 (2007).Search in Google Scholar

26. doi:10.1246/cl.2004.972, M. Sonoda, Y. Sakai, T. Yoshimura, Y. Tobe, K. Kamada. Chem. Lett. 33, 972 (2004).Search in Google Scholar

27. doi:10.1021/ol060781u, T. Yoshimura, A. Inaba, M. Sonoda, K. Tahara, Y. Tobe, R. V. Williams. Org. Lett. 8, 2933 (2006).Search in Google Scholar

28. doi:10.1021/ja0655441, K. Tahara, S. Furukawa, H. Uji-i, T. Uchino, T. Ichikawa, J. Zhang, M. Sonoda, F. C. De Schryver, S. De Feyer, Y. Tobe. J. Am. Chem. Soc. 128, 16613 (2006).Search in Google Scholar

29. (a) F. Diederich, L. Gobbi. Top. Curr. Chem. 201, 43 (1999);10.1007/3-540-49451-0_2Search in Google Scholar

29. (b) Y. Tobe. In Advances in Strained and Interesting Organic Molecules, B. Halton (Ed.), Vol. 7, p. 153, JAI Press, Greenwich, CT (2000).10.1016/S1527-4640(99)80006-0Search in Google Scholar

30. doi:10.1002/anie.199203141, R. Boese, J. R. Green, J. Mittendorf, D. L. Mohler, K. P. C. Vollhardt. Angew Chem., Int. Ed. Engl. 31 1643 (1992).Search in Google Scholar

31. doi:10.1021/jo010183n, W. B. Wan, M. M. Haley. J. Org. Chem. 66, 3893 (2001).Search in Google Scholar

32. (a) G. Eglinton, A. R. Galbraith. Proc. Chem. Soc. 350 (1957);Search in Google Scholar

32. (b) O. M. Behr, G. Eglinton, R.A. Raphael. Chem. Ind. 699 (1959);Search in Google Scholar

32. (c) G. Eglinton, A. R. Galbraith. J. Chem. Soc. 3614 (1960).Search in Google Scholar

33. doi:10.1021/jo00085a016, Q. Zhou, P. J. Carroll, T. M. Swager. J. Org. Chem. 59, 1294 (1994).Search in Google Scholar

34. doi:10.1002/1521-3765(20000602)6:11<2044::AID-CHEM2044>3.0.CO;2-Y, W. B. Wan, S. C. Brand, J. J. Pak, M. M. Haley. Chem.Eur. J. 6, 2044 (2000).Search in Google Scholar

35. doi:10.1021/ja964048h, M. M. Haley, M. L. Bell, J. J. English, C. A. Johnson, T. J. R. Weakley. J. Am. Chem. Soc. 119, 2956 (1997),Search in Google Scholar

36. doi:10.1002/anie.199708361, M. M. Haley, S. C. Brand, J. J. Pak. Angew. Chem., Int. Ed. Engl. 36, 835 (1997).Search in Google Scholar

37. doi:10.1021/ja991749g, J. J. Pak, T. J. R. Weakley, M. M. Haley. J. Am. Chem. Soc. 121, 8182 (1999).Search in Google Scholar

38. doi:10.1021/jo050926v, J. A. Marsden, M. M. Haley. J. Org. Chem. 70, 10213 (2005).Search in Google Scholar

39. doi:10.1002/1521-3773(20000804)39:15<2632::AID-ANIE2632>3.0.CO;2-F, P. Siemsen, R. C. Livingston, F. Diederich. Angew. Chem., Int. Ed. 39, 2632 (2000).Search in Google Scholar

40. doi:10.1002/anie.200353043, J. A. Marsden, J. J. Miller, M. M. Haley. Angew. Chem., Int. Ed. 43, 1694 (2004).Search in Google Scholar

41. doi:10.1021/jp0539573, S. Anand, O. Varnavski, J. A. Marsden, M. M. Haley, H. B. Schlegel, T. Goodson III. J. Phys. Chem. A 110, 1305 (2006).Search in Google Scholar

42. (a) doi:10.1126/science.281.5383.1653, M. Albota, D. Beljonne, J.-L. Bredas, J. E. Ehrlich, J.-Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M.Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, C. Xu. Science 281, 1653 (1998);Search in Google Scholar

42. (b) doi:10.1016/S0009-2614(98)01196-8, T.Kogej, D. Beljonne, F. Meyers, J. W. Perry, S. R. Marder, J.-L. Bredas. Chem. Phys. Lett. 298, 1 (1998);Search in Google Scholar

42. (c) doi:10.1002/1616-3028(20020916)12:9<631::AID-ADFM631>3.0.CO;2-W, D. Beljonne, W. Wenseleers, E. Zoger, Z. Shuai, H. Vogel, S. J. K. Pond, J. W. Perry, S. R. Marder, J.-L. Bredas. Adv. Funct. Mater. 12, 631 (2002);Search in Google Scholar

42. (d) T. Lin, S. Chung, K. Kim, X.Wang, G. S. He, J. Swiatkiewicz, H. E. Pudavar, P. N. Prasad. Adv. Polym Sci. 161, 157 (2003);Search in Google Scholar

42. (e) doi:10.1021/ja051099i, Y. Wang, G. S. He, P. N. Prasad, T. Goodson III. J. Am. Chem. Soc. 127, 10128 (2005);Search in Google Scholar

42. (f) doi:10.1021/ar020247w, T.Goodson III. Acc. Chem. Res. 38, 99 (2005).Search in Google Scholar

43. doi:10.1021/ja062709x, A. Bhaskar, R. Guda, M. M. Haley, T. Goodson III. J. Am. Chem. Soc. 128, 13972 (2006).Search in Google Scholar

Published Online: 2009-01-01
Published in Print: 2008-01-01

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1351/pac200880030519/html
Scroll to top button