Skip to content
Publicly Available Published by De Gruyter January 1, 2009

Monodisperse single nanodiamond particulates

  • Eiji Ōsawa

Abstract

Detonation nanodiamond (DN) was discovered in 1963, but for several reasons was known only among a small number of scientists until the turn of the century. The most serious cause was the fact that primary nanocarbon particles formed by the "bottom-up method" are in general covalently bound together under high-temperature and -pressure conditions to form large agglutinates, which were difficult to separate by conventional methods. DN was not an exception. A breakthrough led to the isolation of primary particles having the expected size of 4-5 nm by wet-milling with zirconia micro-beads. Thus, long-waited primary particles of DN finally became available in kg quantities in the form of colloidal sol, gel, and readily redispersible flakes. Progress in the development of a new form of the old material is presented.


Conference

International Conference on Modern Physical Chemistry for Advanced Materials (MPC '07), Kharkiv, Ukraine, 2007-06-26–2007-06-30


References

1. R. M. Hazen. The Diamond Makers, Cambridge University Press, Cambridge (1999).Search in Google Scholar

2. K. Kobashi. Diamond Films, Chemical Vapor Deposition for Oriented and Heteroepitaxial Growth, Elsevier, Oxford (2005).Search in Google Scholar

3. C. Donnet, A. Erdemir. Tribology of Diamond-like Carbon Films: Fundamentals and Applications, Springer, Berlin (2007).Search in Google Scholar

4. E. Osawa. In Synthesis, Properties and Applications of Ultrananocrystalline Diamond, D. Gruen, A. Ya. Vul', O. Shenderova (Eds.), pp. 231-240, Springer, Dortrecht (2005).Search in Google Scholar

5. doi:10.1016/j.diamond.2007.08.008, E. Osawa. Diamond Relat. Mater. 16, 2018 (2007).Search in Google Scholar

6. doi:10.1134/1.1711431, V. V. Danilenko. Phys. Solid State 46, 595 (2004).Search in Google Scholar

7. doi:10.1126/science.133.3467.1821, P. S. DiCarli, J. C. Jamieson. Science 133, 1821 (1961).Search in Google Scholar

8. doi:10.1038/333440a0, N. R. Greiner, D. S. Phillips, J. D. Johnson, F. Volk. Nature 333, 440 (1988).Search in Google Scholar

9. doi:10.1016/j.carbon.2005.02.020, A. Kruger, F. Kataoka, M. Ozawa, A. Aksenskii, A. Ya. Vul', Y. Fjino, A. Suzuki, E. Osawa. Carbon 43, 1722 (2005).Search in Google Scholar

10. doi:10.1016/j.cplett.2007.07.091, O. A. Williams, O. Douheret, M. Daenen, K. Haenen, E. Osawa, M. Takahashi. Chem. Phys. Lett. 445, 255 (2007).Search in Google Scholar

11. doi:10.1021/nl071521o, H. Huang, E. Pierstorff, E. Osawa, D. Ho. Nano Lett. 7, 3305 (2007).Search in Google Scholar

12. doi:10.1134/1.1130846, A. E. Aleksenskii, M. V. Baidakova, A. Ya. Vul', V. I. Siklitskii. Phys. Solid State 41, 668 (1999).Search in Google Scholar

13. D. M. Gruen. MRS Bull. 10, 771 (2001).10.1557/mrs2001.204Search in Google Scholar

14. doi:10.1016/j.diamond.2007.08.003, A. Y. Vul', E. D. Eydelman, M. Inakuma, E. Osawa. Diamond Relat. Mater. 16, 2023 (2007).Search in Google Scholar

15. E. Oda, K. Ameyama, S. Yamaguchi. Mater. Sci. Forum 503-504, 573 (2006).10.4028/www.scientific.net/MSF.503-504.573Search in Google Scholar

16. doi:10.1140/epjb/e2006-00314-7, A. M. Panich, A. I. Shames, H.-M. Vieth, M. Takahashi, E. Osawa, A. Ya. Vul', A. Ya. Eur. J. Phys. B 52, 397 (2006).Search in Google Scholar

17. doi:10.1016/j.diamond.2007.08.026, A. I. Shames, A. M. Panich, S. Porro, M. Rovere, S. Musso, A. Tagliaferro, M. V. Baidakova, V. Yu. Osipov, A. Ya. Vul', T. Enoki, M. Takahashi, E. Osawa, O. A. Williams, P. Bruno, D. M. Gruen. Diamond Relat. Mater. 16, 1806 (2007).Search in Google Scholar

18. doi:10.1016/j.diamond.2005.08.057, E. D. Eidelman, V. I. Siklitsky, L. V. Sharonova, M. A. Yagovkina, A. Ya. Vul', M. Takahashi, M. Inakuma, E. Osawa. Diamond Relat. Mater. 14, 1765 (2005).Search in Google Scholar

19. E. Osawa. NCRI Tech. Bull., No. 3, 1-6 (2007) (see <http://nano-carbon.com>).Search in Google Scholar

20. O. A. Williams, M. Nesladek, M. Daenen, S. Michaelson, O. Ternyak, A. Hoffman, E. Osawa, K. Haenen, R. B. Jackman, D. M. Gruen. Diamond Relat. Mater. (2008). In press.Search in Google Scholar

21. doi:10.1021/jp0683420, M. V. Korobov, N. V. Avramenko, A. G. Bogachev, N. V. Rozhkova, E. Osawa. J. Phys. Chem. C 111, 7330 (2007).Search in Google Scholar

22. doi:10.1134/1.1129989, A. E. Aleksenskii, M. V. Baidakova, A. Y. Vul', V. Y. Davydov, A. Pevtsova. Phys. Solid State 39, 1007 (1997).Search in Google Scholar

23. H. Huang, L. Dai, E. Osawa. Unpublished results.Search in Google Scholar

24. doi:10.1002/adma.200601452, M. Ozawa, M. Inakuma, M. Takahashi, F. Kataoka, A. Kruger, E. Osawa. Adv. Mater. 19, 1201 (2007).Search in Google Scholar

25. doi:10.1016/j.diamond.2007.07.020, A. M. Schrand, R. C. Murdock, E. Osawa, J. J. Schlager, S. M. Hussain, L. Dai. Diamond Relat. Mater. 16, 2118 (2007).Search in Google Scholar

26. doi:10.1021/jp066387v, A. M. Schrand, H. Huang, C. Carlson, J. J. Schlager, E. Osawa, S. M. Hussain, L. Dai. J. Phys. Chem. B 111, 2 (2007).Search in Google Scholar

27. A. M. Schrand, J. Johnson, L. Dai, S. M. Hussain, J. J. Schlager, L. Zhu, Y. Hong, E. Osawa. In Safety of Nanoparticles: From Manufacturing to Clinical Applications, T. Webster (Ed.), Springer, Berlin. In press.Search in Google Scholar

28. doi:10.1016/j.diamond.2006.05.008, V. Livramento, J. B. Correia, N. Shohoji, E. Osawa. Diamond Relat. Mater. 6, 202 (2007).Search in Google Scholar

29. doi:10.1364/OL.31.000625, Y. Colpin, A. Swan, A. V. Zvyagin, T. Plakhotnik. Opt. Lett. 31, 625 (2006).Search in Google Scholar

Published Online: 2009-01-01
Published in Print: 2008-01-01

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1351/pac200880071365/html
Scroll to top button