Skip to content
Publicly Available Published by De Gruyter January 1, 2009

Plasma synthesis of group IV quantum dots for luminescence and photovoltaic applications

  • Uwe Kortshagen , Rebeccah Anthony , Ryan Gresback , Zachary Holman , Rebekah Ligman , Chin-Yi Liu , Lorenzo Mangolini and Stephen A. Campbell

Abstract

The unique ability of nonthermal plasmas to form high-quality nanocrystals (NCs) of covalently bonded semiconductors, including the group IV elements silicon (Si) and germanium (Ge), has been extensively demonstrated over the past few years. Recently, plasma processing was also extended to the surface functionalization of NCs, imparting further functionalities to plasma-produced NCs such as solution-processability or the passivation of electronic surface states. This paper focuses on the synthesis and surface functionalization of Si- and Ge-NCs, and on their application in luminescent and photovoltaic devices.


Conference

International Symposium on Plasma Chemistry (ISPC-18), International Symposium on Plasma Chemistry, ISPC, Plasma Chemistry, 18th, Kyoto, Japan, 2007-08-26–2007-08-31


References

1. doi:10.1080/00207218108901230, K. G. Emeleus. Int. J. Electron. 50, 109 (1981).Search in Google Scholar

2. doi:10.1063/1.95648, R. M. Roth, K. G. Spears, G. D. Stein, G. Wong. Appl. Phys. Lett. 46, 253 (1985).Search in Google Scholar

3. A. Bouchoule. Dusty Plasmas, John Wiley, West Sussex, UK (1999).Search in Google Scholar

4. R. Butte, R. Meaudre, M. Meaudre, S. Vignoli, C. Longeaud, J. P. Kleider, P. Roca i Cabarrocas. Philos. Mag. B 79, 1079 (1999).10.1080/13642819908214860Search in Google Scholar

5. doi:10.1016/S0921-5107(02)00690-6, S. Oda. Mater. Sci. Eng., B 101, 19 (2003).Search in Google Scholar

6. doi:10.1021/ja00072a025, C. B. Murray, D. J. Norris, M. G. Bawendi. J. Am. Chem. Soc. 115, 8706 (1993).Search in Google Scholar

7. doi:10.1126/science.271.5251.933, A. P. Alivisatos. Science 271, 933 (1996).Search in Google Scholar

8. doi:10.1146/annurev.matsci.30.1.545, C. B. Murray, C. R. Kagan, M. G. Bawendi. Annu. Rev. Mater. Sci. 30, 545 (2000).Search in Google Scholar

9. doi:10.1126/science.1084424, D. Yu, C. Wang, P. Guyot-Sionnest. Science 300, 1277 (2003).Search in Google Scholar

10. doi:10.1126/science.1116703, D. V. Talapin, C. B. Murray. Science 310, 86 (2005).Search in Google Scholar

11. doi:10.1103/PhysRevLett.92.186601, R. D. Schaller, V. I. Klimov. Phys. Rev. Lett. 92, 186601 (2004).Search in Google Scholar

12. doi:10.1021/nl0502672, R. J. Ellingson, M. C. Beard, J. C. Johnson, P. R. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, A. L. Efros. Nano Lett. 5, 865 (2005).Search in Google Scholar

13. doi:10.1021/nl052276g, R. D. Schaller, M. Sykora, J. M. Pietryga, V. I. Klimov. Nano Lett. 6, 424 (2006).Search in Google Scholar

14. doi:10.1063/1.1586957, A. Bapat, C. R. Perrey, S. A. Campbell, C. B. Carter, U. Kortshagen. J. Appl. Phys. 94, 1969 (2003).Search in Google Scholar

15. doi:10.1021/nl050066y, L. Mangolini, E. Thimsen, U. Kortshagen. Nano Lett. 5, 655 (2005).Search in Google Scholar

16. doi:10.1002/cvde.200606559, P. Cernetti, R. Gresback, S. A. Campbell, U. Kortshagen. Chem. Vapor Deposition 13, 345 (2007).Search in Google Scholar

17. R. Anthony, E. Thimsen, J. Johnson, S. Campbell, U. Kortshagen. MRS Proc. 892, FF11 (2005).Search in Google Scholar

18. doi:10.1063/1.115811, R. P. Camata, H. A. Atwater, K. J. Vahala, R. C. Flagan. Appl. Phys. Lett. 68, 3162 (1996).Search in Google Scholar

19. doi:10.1021/la034487b, X. Li, Y. He, S. S. Talukdar, M. T. Swihart. Langmuir 19, 8490 (2003).Search in Google Scholar

20. doi:10.1088/0741-3335/46/12B/009, A. Bapat, C. Anderson, C. R. Perrey, C. B. Carter, S. A. Campbell, U. Kortshagen. Plasma Phys. Controlled Fusion 46, B97 (2004).Search in Google Scholar

21. doi:10.1021/cr000064s, J. M. Buriak. Chem. Rev. 102, 1271 (2002).Search in Google Scholar

22. doi:10.1016/S0022-0728(02)00994-4, L. H. Lie, M. Duerdin, E. M. Tuite, A. Houlton, B. R. Horrocks. J. Electroanal. Chem. 538-539, 183 (2002).Search in Google Scholar

23. doi:10.1021/la0509394, F. Hua, M. T. Swihart, E. Ruckenstein. Langmuir 21, 6054 (2005).Search in Google Scholar

24. doi:10.1063/1.2210788, D. Jurbergs, L. Mangolini, E. Rogojina, U. Kortshagen. Appl. Phys. Lett. 88, 233116 (2006).Search in Google Scholar

25. doi:10.1016/j.jlumin.2006.08.068, L. Mangolini, D. Jurbergs, E. Rogojina, U. Kortshagen. J. Lumin. 121, 327 (2006).Search in Google Scholar

26. doi:10.1002/adma.200700595, L. Mangolini, U. Kortshagen. Adv. Mater. 19, 2513 (2007).Search in Google Scholar

27. doi:10.1109/MCD.2004.1304539, J. Y. Tsao. IEEE Circuits & Devices Mag. May/June, 28 (2004).Search in Google Scholar

28. doi:10.1038/35044012, L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, F. Priolo. Nature 408, 440 (2000).Search in Google Scholar

29. K. S. Cho, N.-M. Park, T.-Y. Kim, K.-H. Kim, G. Y. Sung, J. H. Shin. Appl. Phys. Lett. 86, 071909-1-3 (2005).10.1063/1.1866638Search in Google Scholar

30. doi:10.1063/1.2471662, R. K. Ligman, L. Mangolini, U. R. Kortshagen, S. A. Campbell. Appl. Phys. Lett. 90, 061116 (2007).Search in Google Scholar

31. doi:10.1021/nl071486l, M. C. Beard, K. P. Knutsen, P. Yu, J. M. Luther, Q. Song, W. K. Metzger, R. J. Ellingson, A. J. Nozik. Nano Lett. 7, 2506 (2007).Search in Google Scholar

Published Online: 2009-01-01
Published in Print: 2008-01-01

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1351/pac200880091901/html
Scroll to top button