Skip to content
Publicly Available Published by De Gruyter January 1, 2009

The future of solar photovoltaics: A new challenge for chemical physics

  • Oleg Shevaleevskiy

Abstract

In recent times, photovoltaic (PV) technologies for solar energy conversion have gained greater recognition. World production of PV cells and modules over the last five years grew at an average of around 40 % a year. The history of modern PV science started more than half a century ago. However, the period that followed exploited the mid-20th century developments in the basics of solid-state physics and semiconductor science. With only a few exceptions, almost no major achievements were attained during a long period of time. The present paper offers an attempt of a critical retrospective look at the history and current progress of solar PV research from a personal viewpoint. It also addresses the current status of research on conventional solid-state PV devices and compares it with the alternative organic and molecular PV systems. The paper briefly describes the potential of new types of organic and mesoscopic dye-sensitized solar cells (DSCs). The paper shows that chemical physics rather than traditional solid-state physics is expected to lead to exciting challenges in the future of PV science.


Conference

International Conference and Exhibition "Molecular and Nanoscale Systems for Energy Conversion" (MEC-2007), Moscow, Russia, 2007-10-01–2007-10-03


References

1. doi:10.1063/1.1721711, D. M. Chapin, C. S. Fuller, G. L. Pearson. J. Appl. Phys. 25, 676 (1954).Search in Google Scholar

2. doi:10.1103/RevModPhys.73.767, Zh. I. Alferov. Rev. Mod. Phys. 73, 767 (2001).Search in Google Scholar

3. Zh. I. Alferov, V. M. Andreev, M. B. Kagan, I. I. Protasov, V. G. Trofim. Sov. Phys. Semicond. 4, 12 (1970).Search in Google Scholar

4. doi:10.1063/1.89674, D. L. Staebler, C. R. Wronski. Appl. Phys. Lett. 31, 292 (1977).Search in Google Scholar

5. doi:10.1103/PhysRevLett.78.5014, A. Luque, A. Marti. Phys. Rev. Lett. 78, 5014 (1997).Search in Google Scholar

6. doi:10.1016/j.physb.2006.03.006, A. Luque, A. Marti, E. Antolin, C. Tablero. Physica B 382, 320 (2006).Search in Google Scholar

7. doi:10.1103/PhysRevLett.82.1221, W. Shan, W. Walukiewicz, J. W. Ager, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, S. R. Kurtz. Phys. Rev. Lett. 8, 1221 (1999).Search in Google Scholar

8. doi:10.1063/1.1760836, A. Luque, A. Marti, C. Stanley, N. Lopez, L. Cuadra, D. Zhou, J. L. Pearson, A. McKee. J. Appl. Phys. 96, 903 (2004).Search in Google Scholar

9. doi:10.1103/PhysRevB.73.085206, P. Palacios, J. J. Fernandez, K. Sanchez, J. C. Conesa, P. Wahnon. Phys. Rev. B 73, 085206 (2006).Search in Google Scholar

10. doi:10.1002/pssa.200566179, P. Palacios, K. Sanchez, J. C. Conesa, P. Wahnon. Phys. Status Solidi A 203, 1395 (2006).Search in Google Scholar

11. doi:10.1149/1.2917902, L. Larina, E. M. Trukhan, O. Shevaleevskiy, B. T. Ahn. J. Electrochem. Soc. 155, H529 (2008).Search in Google Scholar

12. doi:10.1021/ja00212a033, N. Vlachopoulos, P. Liska, J. Augustynski, M. Gratzel. J. Am. Chem. Soc. 110, 1216 (1988).Search in Google Scholar

13. doi:10.1038/353737a0, B. O'Regan, M. Gratzel. Nature 353, 737 (1991).Search in Google Scholar

14. A. E. Becquerel. C. R. Acad. Sci. 9, 561 (1839).Search in Google Scholar

15. doi:10.1098/rstl.1877.0009, W. G. Adams, R. E. Day. Philos. Trans. R. Soc. 167, 313 (1877).Search in Google Scholar

16. G. M. Minchin. The Photographic News 35, 57 (1891).Search in Google Scholar

17. C. E. Fritts. Am. J. Sci. 26, 465 (1883).10.2475/ajs.s3-26.156.465Search in Google Scholar

18. B. T. Kolomiets. Izv. AN SSSR, Ser. Fiz. 5-6, 695 (1938).Search in Google Scholar

19. N. N. Semenov. Nauchnoe Slovo (in Russian) 2-3, 3 (1931).Search in Google Scholar

20. N. N. Semenov. Sci. Life (in Russian) 10-11, 16 (1972).Search in Google Scholar

21. N. N. Semenov. Chem. Br. 10, 471 (1974).10.1088/0031-9112/25/10/032Search in Google Scholar

22. doi:10.1134/1.1787110, Zh. I. Alferov, V. M. Andreev, V. D. Rumyantsev. Semiconductors 38, 899 (2004).Search in Google Scholar

23. In press release of the Fraunhofer Institute for Solar Energy Systems, Freiburg, Germany (2006); <http://www.ise.fhg.de/press-and-media/press-releases>.Search in Google Scholar

24. L. L. Kazmerski. In World Renewable Energy Congress VI (WREC2000), A. A. M. Syaigh (Ed.), p. 2674, Elsevier Science (2000).10.1016/B978-008043865-8/50588-2Search in Google Scholar

25. doi:10.1016/j.elspec.2005.09.004, L. L. Kazmerski. J. Electron Spectrosc. Relat. Phenom. 150, 105 (2006).Search in Google Scholar

26. W. Shockley. Electrons and Holes in Semiconductors, D. van Nostrand, Princeton (1950).10.1063/1.3066656Search in Google Scholar

27. doi:10.1119/1.1934565, G. L. Pearson. Am. J. Phys. 25, 591 (1957).Search in Google Scholar

28. doi:10.1073/pnas.47.8.1303, P. Rappoport. Proc. Natl. Acad. Sci. USA 47, 1303 (1961).Search in Google Scholar

29. doi:10.1016/S1364-0321(97)00002-6, L. L. Kazmerski. Renew. Sustain. Energy Rev. 1, 71 (1997).Search in Google Scholar

30. doi:10.1007/BF02698283, O. Chevaleevski, L. Larina. Korean J. Chem. Eng. 18, 403 (2001).Search in Google Scholar

31. doi:10.1063/1.2753729, J. F. Geisz, S. Kurtz, M. W. Wanlass, J. S. Ward, A. Dada, D. J. Friedman, J. M. Olson, W. E. McMahon, E. Moriarty, J. T. Kiehl. Appl. Phys. Lett. 91, 023502-01 (2007).Search in Google Scholar

32. doi:10.1016/j.tsf.2007.12.016, A. S. Gudovskikh, N. A. Kaluzhniy, V. M. Lantratov, S. A. Mintairov, M. Z. Shvarts, V. M. Andreev. Thin Solid Films 20, 6739 (2008).Search in Google Scholar

33. doi:10.1063/1.96937, C. W. Tang. Appl. Phys. Lett. 48, 183 (1986).Search in Google Scholar

34. doi:10.1016/0379-6779(91)91581-T, S. Siebentritt, S. Gunster, D. Meissner. Synth. Met. 41-43, 1173 (1991).Search in Google Scholar

35. doi:10.1080/10587259308032183, S. Siebentritt, S. Gunster, D. Meissner. Mol. Cryst. Liq. Cryst. 229, 111 (1993).Search in Google Scholar

36. doi:10.1016/S0927-0248(99)00099-9, J. Rostalski, D. Meissner. Sol. Energy Mater. Sol. Cells 61, 87 (2000).Search in Google Scholar

37. O. I. Shevaleevskiy, V. P. Poponin, L. L. Larina. Mater. Sci. Forum 173-174, 117 (1995).10.4028/www.scientific.net/MSF.173-174.117Search in Google Scholar

38. doi:10.1016/0040-6090(95)08125-9, H. Yonehara, C. Pac. Thin Solid Films 278, 108 (1996).Search in Google Scholar

39. doi:10.1023/B:DOPC.0000046624.51308.df, O. I. Shevaleevskiy. Dokl. Phys. Chem. 398, 245 (2004).Search in Google Scholar

40. doi:10.1149/1.2126576, O. Shevaleevskiy, L. Larina. J. Electrochem. Soc. 153, A1 (2006).Search in Google Scholar

41. doi:10.1126/science.258.5087.1474, N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl. Science 258, 1474 (1992).Search in Google Scholar

42. doi:10.1016/0379-6779(93)90090-J, N. S. Sariciftci, L. Smilowitz, D. Braun, G. Srdanov, V. Srdanov, F. Wudl, A. J. Heeger. Synth. Met. 56, 3125 (1993).Search in Google Scholar

43. doi:10.1063/1.108863, N. S. Sariciftci, D. Braun, C. Zhang, V. Srdanov, A. J. Heeger, G. Stucky, F. Wudl. Appl. Phys. Lett. 62, 585 (1993).Search in Google Scholar

44. doi:10.1142/S0217979294000105, N. S. Sariciftci, A. J. Heeger. Int. J. Mol. Phys. B8, 237 (1994).Search in Google Scholar

45. doi:10.1016/0079-6727(94)00012-N, N. S. Sariciftci. Prog. Quant. Elec. 19, 131 (1995).Search in Google Scholar

46. doi:10.1126/science.1141711, J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Nguyen, M. Dante, A. J. Heeger. Science 317, 222 (2007).Search in Google Scholar

47. doi:10.1016/j.ica.2007.06.042, S. Gunes, N. S. Sariciftci. Inorg. Chim. Acta 361, 581 (2008).Search in Google Scholar

48. doi:10.1016/j.crci.2005.03.033, A. J. Mozer, N. S. Sariciftci. C. R. Chim. 9, 568 (2006).Search in Google Scholar

49. doi:10.1016/S0022-0728(77)80253-2, H. Gerischer. J. Electroanal. Chem. 82, 133 (1977).Search in Google Scholar

50. H. Tributch. Sol. Energy Mater. 322, 972 (1977).Search in Google Scholar

51. R. Memming. "Photoelectrochemical solar energy conversion" in Topics in Current Chemistry, Vol. 143, E. Steckhan (Ed.), pp. 79-112, Springer, Berlin (1988).10.1515/9783112539248-007Search in Google Scholar

52. G. G. Komissarov, N. I. Kobozev, L. I. Nekrasov. Zh. Fiz. Khim. 37, 2555 (1963).Search in Google Scholar

53. M. I. Federov, V. A. Benderskii. Sov. Phys.-Semicond. 4, 1720 (1971).Search in Google Scholar

54. doi:10.1002/pip.712, M. Gratzel. Prog. Photovolt. Res. Appl. 14, 429 (2006).Search in Google Scholar

55. doi:10.1351/pac200173030459, M. Gratzel. Pure. Appl. Chem. 73, 459 (2001).Search in Google Scholar

56. doi:10.1021/la001651b, J. He, A. Hagfeldt, S.-E. Lindquist. Langmuir 17, 2743 (2001).Search in Google Scholar

57. O. Chevaleevski, L. Larina, K. S. Lim. In Proceedings of Third World Conference on Photovoltaic Energy Conversion, p. 23, IEEE, New Jersey (2003).Search in Google Scholar

58. doi:10.1016/S0927-0248(99)00168-3, J. He, H. Lindstrom, A. Hagfeldt, S.-E. Lindquist. Sol. Energy Mater. Sol. Cells 62, 265 (2000).Search in Google Scholar

59. doi:10.1063/1.1723685, M. Durr, A. Bamedi, A. Yasuda, G. Nelles. Appl. Phys. Lett. 84, 3397 (2004).Search in Google Scholar

60. doi:10.1063/1.2203965, P. Liska, K. R. Thampi, M. Gratzel, D. Bremaud, D. Rudmann, H. M. Ipadhyaya, A. N. Tiwari. Appl. Phys. Lett. 88, 203103 (2006).Search in Google Scholar

Published Online: 2009-01-01
Published in Print: 2008-01-01

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 13.5.2024 from https://www.degruyter.com/document/doi/10.1351/pac200880102079/html
Scroll to top button