Skip to content
Publicly Available Published by De Gruyter January 1, 2009

Nanocrystalline silicon carbide films for solar photovoltaics: The role of dangling-bond defects

  • Koeng Su Lim and Oleg Shevaleevskiy

Abstract

Thin films of microcrystalline hydrogenated silicon (µc-Si:H) and nanocrystalline silicon carbide (nc-SiC:H) provide a new class of advanced nanostructured materials for solar photovoltaic (PV) devices. We have worked on the fabrication, characterization, and application of these materials for thin film PV solar cells based on amorphous silicon. Here we present an overview of the preparation and characterization methods for heterogeneous SiC:H-based layers. Hydrogenated nc-SiC:H thin film materials with high crystalline volume fraction were deposited using photo-assisted chemical vapor deposition (photo-CVD) technique. The behavior of spin-containing dangling-bond (DB) defects was performed using electron spin resonance (ESR) and transport measurements as a function of sample crystallinity, doping level, and temperature. The electronic and structural properties of intrinsic and doped µc-Si:H and nc-SiC:H thin films are reviewed with the emphasis of the essential role of DB defects on the photoelectronic transport parameters.


Conference

International Conference and Exhibition "Molecular and Nanoscale Systems for Energy Conversion" (MEC-2007), Moscow, Russia, 2007-10-01–2007-10-03


References

1. Y. Hamakawa, H. Okamoto, Y. Tawada. Int. J. Sol. Energy 1, 125 (1982).10.1080/01425918208909880Search in Google Scholar

2. doi:10.1063/1.331363, Y. Tawada, K. Tsuge, M. Kondo, H. Okamoto, Y. Hamakawa. J. Appl. Phys. 53, 5273 (1982).Search in Google Scholar

3. doi:10.1016/S0022-3093(02)00916-X, S. Y. Myong, H. K. Lee, E. Yoon, K. S. Lim. J. Non-Cryst. Solids 298, 131 (2002).Search in Google Scholar

4. doi:10.1016/0022-3093(96)00047-6, S. Guha. J. Non-Cryst. Solids 198-200, 1076 (1996).Search in Google Scholar

5. doi:10.1063/1.333943, K. S. Lim, M. Konagai, K. Takahashi. J. Appl. Phys. 56, 538 (1984).Search in Google Scholar

6. doi:10.1063/1.337806, W. Y. Kim, H. Tasaki, M. Konagai, K. Takahashi. J. Appl. Phys. 61, 3071 (1987).Search in Google Scholar

7. doi:10.1063/1.373610, C. H. Lee, J. W. Jeon, K. S. Lim. J. Appl. Phys. 87, 8778 (2000).Search in Google Scholar

8. doi:10.1016/j.solmat.2003.12.002, S. Y. Myong, T. H. Kim, K. S. Lim, K. H. Kim, B. T. Ahn, S. Miyajima, M. Konagai. Sol. Energy Mater. Sol. Cells 81, 485 (2004).Search in Google Scholar

9. doi:10.1063/1.1639140, S. Y. Myong, S. S. Kim, K. S. Lim. J. Appl. Phys. 95, 1525 (2004).Search in Google Scholar

10. doi:10.1016/j.jnoncrysol.2004.03.062, G. M. Ferreira, C. Chen, R. J. Koval, J. M. Pearce, C. R. Wronski, R. W. Collins. J. Non-Cryst. Solids 338-340, 694 (2004).Search in Google Scholar

11. doi:10.1063/1.97176, S. Guha, J. Yang, P. Nath, M. Hack. Appl. Phys. Lett. 49, 218 (1986).Search in Google Scholar

12. doi:10.1007/BF00258157, A. Dasgupta, S. Ghosh, S. Ray. J. Mater. Sci. Lett. 14, 1037 (1995).Search in Google Scholar

13. doi:10.1016/S0040-6090(01)01653-4, R. Schropp. Thin Solid Films 403-404, 17 (2002).Search in Google Scholar

14. doi:10.1002/1521-396X(200107)186:1<R4::AID-PSSA99994>3.0.CO;2-F, A. L. Baia Neto, A. Lambertz, R. Carius, F. Finger. Phys. Status Solidi 186, R4 (2001).Search in Google Scholar

15. doi:10.1016/j.ssc.2003.08.040, O. Chevaleevski, S. Y. Myong, K. S. Lim. Solid State Commun. 128, 355 (2003).Search in Google Scholar

16. doi:10.1134/1.1755884, O. I. Shevaleevskii, A. A. Tsvetkov, L. L. Larina, S. Y. Myong, K. S. Lim. Semiconductors 38, 528 (2004).Search in Google Scholar

17. doi:10.1134/1.1944863, O. I. Shevaleevskiy, S. Y. Myong, K. S. Lim, S. Miyadjima, M. Konagai. Semiconductors 39, 709 (2005).Search in Google Scholar

18. doi:10.1063/1.1853492, S. Y. Myong, K. S. Lim. Appl. Phys. Lett. 86, 1 (2005).Search in Google Scholar

19. doi:10.1063/1.119418, J. H. Yang, K. S. Lim. Appl. Phys. Lett. 71, 1846 (1997).Search in Google Scholar

20. doi:10.1063/1.116238, J. W. Lee, K. S. Lim. Appl. Phys. Lett. 68, 1031(1996).Search in Google Scholar

21. doi:10.1063/1.372108, D. Han, G. Yue, J. D. Lorentzen, J. Lin. J. Appl. Phys. 87, 1882 (2000).Search in Google Scholar

22. doi:10.1103/PhysRevB.36.3344, S. Veprek, F. A. Sarott, Z. Iqbal. Phys. Rev. B 36, 3344 (1987).Search in Google Scholar

23. Z. Iqbal, S. Veprek. J. Phys. C 15, 377 (1982).10.1088/0022-3719/15/2/019Search in Google Scholar

24. doi:10.1063/1.99054, E. Bustarret, M. A. Hachicha, M. Brunel. Appl. Phys. Lett. 52, 1675 (1988).Search in Google Scholar

25. doi:10.1063/1.351742, F. Demichelis, C. F. Pirri, E. Tresso. J. Appl. Phys. 72, 1327 (1982).Search in Google Scholar

26. doi:10.1016/S0038-1098(01)00246-0, X. Liu, G. Xu, Y. Sui, Y. He, X. Bao. Solid State Commun. 119, 397 (2001).Search in Google Scholar

27. doi:10.1016/S0022-3093(99)00802-9, F. Finger, J. Muller, C. Malten, R. Carius, H. Wagner. J. Non-Cryst. Solids 266-269, 511 (2000).Search in Google Scholar

28. doi:10.1103/PhysRevLett.85.2324, U. K. Das, T. Yasuda, S. Yamasaki. Phys. Rev. Lett. 85, 2324 (2000).Search in Google Scholar

Published Online: 2009-01-01
Published in Print: 2008-01-01

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.5.2024 from https://www.degruyter.com/document/doi/10.1351/pac200880102141/html
Scroll to top button