Skip to main content
Log in

Thermodynamic reevaluation of the Cu-Zn system by electromotive force measurements in the zinc-rich part

  • Basic And Applied Research
  • Published:
Journal of Phase Equilibria

Abstract

In this work, the Cu-Zn system was explored for alloys in the zinc-rich part above 90 at. % zinc between 643 and 843 K by electromotive force measurements. Modeling was then done and was based on the generally well-accepted description of the binary system as in the last assessment proposed by Kowalski and Spencer [1993Kow] taking into account recent thermodynamic data available in literature. The resulting optimized coefficients are in good agreement with experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.L. Haughton and K.D. Bingham: “The Constitution of Alloys of Al, Cu and Zn,” Proc. R. Soc. A, 1921, 99, pp. 47–69.

    Article  ADS  Google Scholar 

  2. O. Bauer and M. Hansen: “Der Aufbau der Kupfer-Zinklegierungen,” Z. Metallkd., 1927, 19, pp. 423–34 (in German).

    Google Scholar 

  3. A. Ölander: “Eine Elektrochemische Untersuchung von Messing,” Z. Physik. Chem. A, 1933, 164, pp. 428–38 (in German).

    Google Scholar 

  4. H.O. von Samson-Himmelstjerna: “The Heat Content and Heat of Formation of Molten Alloys,” Z. Metallkd., 1936, 28, pp. 197–202.

    Google Scholar 

  5. F. Körber and W. Oelsen: “Zur Thermochemie des Legierungen III. Die Bildungswären des Zweistofflegierungen Eisen-Antimon, Kobalt-Antimon, Nickel-Antimon, Kobalt-Zinn, Nickel-Zinn, Kupfer-Zinn und Kupfer-Zink für den Gusszustand,” Mitt. Kaiser Wilhem Inst. Eisenforschung zu Düsseldorf, 1937, 19, pp. 209–19 (in German).

    Google Scholar 

  6. F. Weibke: “Über die Bildungswärmen im System Kupfer-Zink,” Z. Anorg. Allegemeine Chem., 1937, 232, pp. 289–96 (in German).

    Article  Google Scholar 

  7. R. Hargreaves: “The Vapour Pressure of Zinc in Brasses,” J. Inst. Metals, 1939, 64, pp. 115–34.

    Google Scholar 

  8. A. Schneider and H. Schmid, “Vapour Pressures of Zinc and Cadmium Over Their Binary Liquid Alloys With Copper Silver and Gold,” Z. Elektrochem., 1942, 48, pp. 627–46.

    Google Scholar 

  9. G.V. Raynor: Annoted Equilibrium Diagram Series, No. 3, The Institute of Metals, London, UK, 1944.

    Google Scholar 

  10. M. Temkin: “Mixtures of Fused Salts as Ionic Solutions,” Acta Phys. Chem., 1945, 20(4), pp. 411–20.

    Google Scholar 

  11. O. Redlich and A.T. Kister: “Algebraic Representation of Thermodynamic Properties and the Classification of Solutions,” Ind. Eng. Chem., 1948, 40(2), pp. 345–48.

    Article  Google Scholar 

  12. L.H. Everett, P.W.M. Jacobs, and J.A. Kitchener: “The Activity of Zinc in Liquid Copper-Zinc Alloys,” Acta Metall., 1957, 5, pp. 281–84.

    Article  Google Scholar 

  13. B.B. Argent and D.W. Wakeman: “Thermodynamic Properties of Solid Solutions. Part 1. Copper+Zinc Solid Solution,” Trans. Faraday Soc., 1958, 54, pp. 799–806.

    Article  Google Scholar 

  14. M. Hansen and K. Anderko: Constitution of Binary Alloys, McGraw-Hill, New York, 1958, pp. 649–55.

    Google Scholar 

  15. O.J. Kleppa and C.E. Thalmayer: “An Emf Investigation of Binary Liquid Alloys Rich in Zinc,” J. Phys. Chem., 1959, 63, pp. 1953–58.

    Article  Google Scholar 

  16. O.J. Kleppa and R.C. King: “Heats of Formation of the Solid Solutions of Zinc, Gallium and Germanium in Copper,” Acta Metall., 1962, 10, pp. 1183–86.

    Article  Google Scholar 

  17. D.B. Downie: “Thermodynamic and Structural Properties of Liquid Zinc-Copper alloys,” Acta Metall., 1964, 12, pp. 875–82.

    Article  Google Scholar 

  18. R.L. Orr and B.B. Argent: “Heats of Formation of the α-Brasses,” Trans. Faraday Soc., 1965, 61, pp. 2126–31.

    Article  Google Scholar 

  19. J.P. Pemsler and E.J. Rapperport: “Thermodynamic Activity Measurements Using Atomic Absorption: Copper-Zinc,” Trans. Metall. Soc. AIME, 1969, 245, pp. 1395–1400.

    Google Scholar 

  20. E.H. Baker: “Vapour Pressures and Thermodynamic Behaviour of Liquid Zinc-Copper Alloys at 1150°C,” Trans. Inst. Min. Metall. C, 1970, 79, pp. 1–5.

    Google Scholar 

  21. G.R. Blair and D.B. Downie: “A Calorimetric Study of Silver-Zinc and Copper-Zinc Alloys,” Metal Sci. J., 1970, 4, pp. 1–5.

    Article  Google Scholar 

  22. M. Hillert and L.I. Staffansson: “The Regular Solution Model for Stoechiometric Phases and Ionic Melts,” Acta Chem. Scand., 1970, 24(10), pp. 3618–26.

    Article  Google Scholar 

  23. D.B. Masson and J-L. Sheu: “Variations in the Composition Dependence of the Activity Coefficient in Terminal Solid Solutions of Ag-Zn, Ag-Cd and Cu-Zn,” Metal. Trans., 1970, 1, pp. 3005–09.

    Article  Google Scholar 

  24. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, and K.K. Kelley: Selected Values of Thermodynamic Properties of Binary Alloys, American Society for Metals, Metals Park, OH, 1973, pp. 810–22.

    Google Scholar 

  25. T. Azakami and A. Yazawa: “Activities Measurements of Liquid Copper Binary Alloys,” Can. Metall. Q., 1976, 15(2), pp. 111–22.

    Article  Google Scholar 

  26. K. Parameswaran and G. Healy: “A Calorimetric Investigation of the Copper-Zinc System,” Metall. Trans. B, 1978, 9, pp. 657–64.

    Article  Google Scholar 

  27. U. Gerling and B. Predel: “Zur Kenntnis Thermodynamisher Eigenschaften Flüssiger Kupfer-Zink-Legierungen,” Z. Metallkd., 1980, 71, pp. 158–64 (in German).

    Google Scholar 

  28. B. Sundman and J. Agren: “A Regular Solution Model for Phases With Several Components and Sublattices, Suitable for Computer Applications,” J. Phys. Chem. Solids, 1981, 42, pp. 297–301.

    Article  ADS  Google Scholar 

  29. B. Sundman, B. Jansson, and J.O. Andersson: “The Thermo-Calc Databank System,” Calphad, 1985, 9(2), pp. 153–90.

    Article  Google Scholar 

  30. P.J. Spencer: “A Thermodynamic Evaluation of the Cu-Zn System,” Calphad, 1986, 10(2), pp. 175–85.

    Article  Google Scholar 

  31. S. Sugino and H. Hagiwara: “Activity of Zinc in Molten Copper and Copper-Gold Alloys,” J. Jpn. Inst. Metals, 1986, 50(2), pp. 186–92.

    Article  Google Scholar 

  32. I. Ansara, B. Sundman, and P. Willemin: “Thermodynamic Modeling of Ordered Phases in the Ni-Al System,” Acta Metall., 1988, 36(4), pp. 977–82.

    Article  Google Scholar 

  33. N. Saunders: “Calculated Stable and Metastable Phase Equilibria in Al-Li-Zn Alloys,” Z. Metallkd., 1989, 80, p. 894.

    Google Scholar 

  34. A.P. Miodownik: “Cu-Zn” in Binary Alloy Phase Diagrams, T.B. Massalski, ed., American Society for Metals, Metals Park, OH, 1990, pp. 1508–10.

    Google Scholar 

  35. M. Kowalski and P.J. Spencer: “Thermodynamic Revaluation of the Cu-Zn System,” J. Phase Equilibria, 1993, 14(4), pp. 432–38.

    Article  Google Scholar 

  36. A.P. Miodownik: in Phase Diagrams of Binary Copper Alloys, P.R. Subramanian, D.J. Chakrabarti, and D.E. Laughlin, ed., American Society for Metals, Metals Park, OH, 1994, pp. 487–96.

    Google Scholar 

  37. V. Vassiliev, M. Lelaurain, and J. Hertz: “A New Proposal for the Binary (Sn, Sb) Phase Diagram and Its Thermodynamic Properties Based on a New Emf Study,” J. Alloys Compd., 1997, 247, pp. 223–33.

    Article  Google Scholar 

  38. I. Ansara, A.T. Dinsdale and M.H. Rand, ed.: COST 507 Thermochemical Database for Light Metal Alloys, Vol. 2, Publications Officielles de la Communauté Européenne, Luxembourg, 1998.

    Google Scholar 

  39. M.A. Turchanin: “Enthalpies of Formation of Liquid Copper Alloys With 3d Transition Metals,” Russ. Metall., 1998, 4, pp. 29–38.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

David, N., Fiorani, JM., Vilasi, M. et al. Thermodynamic reevaluation of the Cu-Zn system by electromotive force measurements in the zinc-rich part. JPE 24, 240–248 (2003). https://doi.org/10.1361/105497103770330541

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105497103770330541

Keywords

Navigation