Skip to main content
Log in

Particle loading effect in cold spray

  • Reviewed Papers
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Cold gas dynamic spray is a line-of-sight, high-rate material deposition process that uses a supersonic flow to accelerate small particles (micron-sized) above a material-dependent critical velocity. When the particles impact the substrate, they plastically deform and bond to form a coating. The objective of this research is to investigate the influence of the particle mass flow rate on the properties of coatings sprayed using the cold spray process. Varying the mass flow rate at which the feedstock particles are fed into the carrier gas stream can change the thickness of the coating. It was shown that poor coating quality (peeling) was not a result of flow saturation but, instead, the result of excessive particle bombardment per unit area on the substrate. By increasing the travel speed of the substrate, this can be overcome and well-bonded dense coatings can be achieved. It has also been shown that by heating the carrier gas flow poor coating quality is avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.H. Smith, R.C. Kenmore, R.C. Eschenbach, and J.F. Pelton, U.S. Patent 2,861,900 25, Nov 1958

  2. T.H. Van Steenkiste, J.R. Smith, R.E. Teets, J.J. Moleski, D.W. Gorkiewicz, and R.P. Tison, Kinetic Spray Coatings, Surf. Coat. Technol., 1999, 111, p 62–71

    Article  Google Scholar 

  3. R.C. Dvkhulzen and M.F. Smith, Gas Dynamic Principles of Cold Spray, J. Thermal Spray Technol., 1998, 7(2), p 205–212

    Article  Google Scholar 

  4. T. Van Steenkiste and J.R. Smith, Evaluation of Coatings Produced Via Kinetic and Cold Spray Processes, J. Thermal Spray Technol., 2004, 13, p 274–282

    Article  CAS  Google Scholar 

  5. C. Borchers, F. Gärtner, et al., Microstructural and Macroscopic Properties of Cold Sprayed Copper Coatings, J. Appl. Phys., 2003, 93(12), p 10064–10070

    Article  CAS  Google Scholar 

  6. H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51, p 4379–4394

    Article  CAS  Google Scholar 

  7. T. Schmidt and F. Gärtner, “High Velocity Impact Phenomena and Coating Quality in Cold Spraying,” Prasented at International Thermal Spray Conference 2005 Proceedings (Basel, Switzerland), May 2005

  8. A.P. Alkhimov, A.N. Papyrin, V.F. Kosarev, N.I. Nesterovich, and M.M. Shushpanov, Gas-Dynamic Spray Method for Applying a Coating, U.S. Patent 5,302,414, April 12, 1994

  9. A.P. Alkhimov, V.F. Kosarev, N.I. Nesterovich, A.N. Papyrin, and M.M. Shushpanov, Method and Device for Coating. European Patent 0 484 533 B1, Jan 25, 1995

  10. A.P. Alkhimov, A.I. Gudilov, V.F. Kosarev, and N.I. Nesterovich, Specific Features of Micropaticle Deformation Upon Impact on a Rigid Barrier, J. Appl. Mech. Tech. Phys., 2000, 41, p 188–192

    Article  CAS  Google Scholar 

  11. M. Grujicic, J.R. Saylor, D.E. Beasley, W.S. DeRosset, and D. Heffritch, Computational Analysis of Interfacial Bonding Between Feed-Powder Particles and the Substrate in Cold-Gas Dynamic Spray Process, Appl. Surf. Sci., 2003, 219, p 211–227

    Article  CAS  Google Scholar 

  12. L. Ajdelsztajn, B. Jodoin, G.E. Kim, J. Schoenung, Cold Spray Deposition of Nanocrystalline Aluminum Alloys, Metal. Mater. Trans. A. 2005, 36, p 657–666

    Article  Google Scholar 

  13. B. Jodoin, Cold Spray Nozzle Mach Number Limitation, J. Thermal Spray Technol., 2002, 11, p 496–507

    Article  Google Scholar 

  14. L. Ajdelsztajn, A. Zuniga, B. Jodoin, and E. Lavernia, Cold Gas Dynamic Spraying of a High Temperature Al Alloy, Surf. Coat. Technol., available online July 19, 2005

  15. B. Jodoin, F. Raletz, and M. Vardelle, Cold Spray Modeling and Validation Using an Optical Diagnostic Method, Surf. Coat. Technol., 2006, 200(14–15), p 4424–4432

    Article  CAS  Google Scholar 

  16. “Standard Test Method for Adhesion or Cohesion Strenth of Thermal Spray Coatings,” C633-01, Annual Book of ASTM Standards, Vol. 02.05, 2006

  17. W.P. Jones and B.E. Launder, The Prediction of Laminarization with a Two-Equation Model of Turbulence, Int. J. Heat Mass Transfer, 1972, 15, p 301–314

    Article  Google Scholar 

  18. R. McCune, W.T. Donlon, O.O. Popoola, and E.L. Cartwritht, Characterization of Copper Layers Produced by Cold Gas-Dynamic Spraying, J. Thermal Spray Technol., 2000, 9(1), p 73–81

    Article  CAS  Google Scholar 

  19. D.L. Gilmore, R.C. Dykhuizan, R.A. Neiser, T.J. Roemer, and M.F. Smith, Particle Velocity and Deposition Efficiency in the Cold Spray Process, J. Thermal Spray Technol., 1999, 8(4), p 576–582

    Article  CAS  Google Scholar 

  20. T.H. Van Steenkiste, J.R. Smith, and R.E. Teets, Aluminum Coatings Via Kinetic Spray With Relatively Large Powder Particles, Surf. Coat. Technol. 2002, 154, p 237–252

    Article  Google Scholar 

  21. T. Stoltenhoff, H. Kreye, and H.J. Richte An Analysis of the Cold Spray Process and Its Coatings, J. Thermal Spray Technol., 2002, 11(4), p 542–550

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The original version of this paper was published in the CD ROM Thermal Spray Comects: Explore Its Surfacing Potential, Interational Thermal Spray Conference, sponsored by DVS, ASM International, and HW International Institute of Welding, Basel, Switzerland, May 2–4, 2005, DVS-Verlag GmBH, Düsseldorf. Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, K., Jodoin, B. & Karov, J. Particle loading effect in cold spray. J Therm Spray Tech 15, 273–279 (2006). https://doi.org/10.1361/105996306X108237

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1361/105996306X108237

Keywords

Navigation