Skip to main content
Log in

Numerical simulation of the cold gas dynamic spray process

  • Reviewed Papers
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

A computational fluid dynamic (CFD) model of the cold gas dynamic spray process is presented. The gas dynamic flow field and particle trajectories within an oval-shaped supersonic nozzle as well as in the immediate surroundings of the nozzle exit, before and after the impact with the target plane, are simulated. Predicted nozzle wall pressure values compare well with experimental data. In addition, predicted particle velocity results at the nozzle exit are in qualitative agreement with those obtained using a side-scatter laser Doppler anemometer (LDA). Details of the pattern of the particle release into the surroundings are visualized in a convenient manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C D :

drag coefficient

d :

diameter

e :

coefficient of restitution

h :

convective heat transfer coefficient

l :

standoff distance

M:

Mach number

M :

rotational mechanical impulse

Nu:

Nusselt number

p :

pressure

P :

linear mechanical impulse

Re:

Reynolds number

t :

Maximum nozzle thickness

T :

temperature

w :

domain semiwidth

y :

target center to boundary clearance

z :

distance from nozzle throat along nozzle axis

θ:

angle between nozzle axis and target normal

*:

nozzle throat

e:

nozzle exit

f:

particle feed

n:

normal component of vector

o:

stagnation

p:

particle

t:

tangential component of vector

References

  1. A.P. Alkhimov, V.F. Kosareve, and A.N. Papyrin, A Method of Cold Gas-Dynamic Spray Deposition,Dokl. Akad. Nauk SSSR, 1990,315(5), p 1062–1065, in Russian

    CAS  Google Scholar 

  2. R.C. Dykhuizen and M.F. Smith, Gas Dynamic Principles of Cold Spray,J. Therm. Spray. Technol., 1998,7(2), p 205–212

    Article  CAS  Google Scholar 

  3. A.P. Alkhimov, A.N. Papyrin, V.F. Kosarev, N.I. Nesterovich, and M.M. Shushapanov, “Gas-Dynamic Spray Method for Applying a Coating,” U.S. Patent 5,302,414, 1994

  4. A.P. Alkhimov, A.N. Papyrin, V.F. Kosarev, N.I. Nesterovich, and M.M. Shushapanov, “Method and Device for Coating,” European Patent 0 484 533 B1, 1995

  5. A.I. Kashirin, O.F. Klyuev, and T.V. Buzdygar, “Apparatus for Gas-Dynamic Coating,” U.S. Patent 6,402,050, 2002

  6. M. Cowley, Dusting-Off the Hazards of Powder Coating,Finishing, 2003,27(12), p 18–21

    Google Scholar 

  7. H. Heriaud-Kraemer, G. Montavon, S. Hertert, H. Robin, and C. Coddet, Harmful Risks for Workers in Thermal Spraying: A Review Completed by a Survey in French Company,J. Therm. Spray. Technol., 2003,12(4), p 542–554

    Article  CAS  Google Scholar 

  8. M. Karimi, “An Investigation of the Cold Gas Dynamic Supersonic Spray Process Particle/Flow Field,” M.A.Sc. thesis, University of Windsor, 2005

  9. S. Sarkar, G. Erlebacher, M.Y. Hussaini, and H.O. Kreiss, Analysis and Modelling of Dilatational Terms in Compressible Turbulence,J. Fluid Mech., 1991, June,227, p 473–493

    Article  Google Scholar 

  10. S. Sarkar and B. Lakshmanan, Application of a Reynolds Stress Turbulence Model to the Compressible Shear Layer,AIAA J., 1991,29(5), p 743–749

    Article  Google Scholar 

  11. Fluent 6.2 User’s Guide, Fluent Inc., Lebanon, NH, 2005

  12. B. Jodoin, Cold Spray Nozzle Mach Number Limitation,J. Therm. Spray. Technol., 2002,11(4), p 496–507

    Article  Google Scholar 

  13. M. Grujicic, C. Tong, W.S. DeRosset, and D. Helfritch, Flow Analysis and Nozzle-Shape Optimization for the Cold-Gas Dynamic-Spray Process,Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf., 2003,217(11), p 1603–1613

    Google Scholar 

  14. V. Shukla, G.S. Elliott, and B.H. Kear, Nanopowder Deposition by Supersonic Rectangular Jet Impingement,J. Therm. Spray. Technol., 2000,9(3), p 394–398

    Article  CAS  Google Scholar 

  15. P.H. Shipway and I.M. Hutchings, Method for Optimizing the Particle Flux in Erosion Testing with a Gas-Blast Apparatus,Wear, 1994,174 (1–2), p 169–175

    Article  Google Scholar 

  16. R. Clift, J.R. Grace, and M.E. Weber,Bubbles, Drops, and Particles, Academic Press, New York, 1978

    Google Scholar 

  17. V.F. Kosarev, S.V. Klinkov, A.P. Alkhimov, and A.N. Papyrin, On Some Aspects of Gas Dynamics of the Cold Spray Process,J. Therm. Spray. Technol., 2003,12(2), p 265–281

    Article  Google Scholar 

  18. T. Stoltenhoff, H. Kreye, and H.J. Richter, An Analysis of the Cold Spray Process and Its Coatings,J. Therm. Spray. Technol., 2002,11(4), p 542–550

    Article  CAS  Google Scholar 

  19. R.M. Brach, Impact Dynamics with Applications to Solid Particle Erosion,Int. J. Impact Eng., 1988,7(1), p 37–53

    Article  Google Scholar 

  20. I. Kleis and I. Hussainova, Investigation of Particle-Wall Impact Process,Wear, 1999,233–235, p 168–173

    Article  Google Scholar 

  21. D.L. Gilmore, R.C. Dykhuizen, R.A. Neiser, T.J. Roemer, and M.F. Smith, Particle Velocity and Deposition Efficiency in the Cold Spray Process,J. Therm. Spray. Technol., 1999,8(4), p 576–582

    Article  CAS  Google Scholar 

  22. T.H. Van Steenkiste, J.R. Smith, and R.E. Teets, Aluminum Coatings Via Kinetic Spray with Relatively Large Powder Particles,Surf. Coat. Technol., 2002,154(2–3), p 237–252

    Article  Google Scholar 

  23. C.-J. Li and W.-Y. Li, Deposition Characteristics of Titanium Coating in Cold Spraying,Surf. Coat. Technol., 2003,167(2–3), p 278–283

    Article  CAS  Google Scholar 

  24. M. Karimi, G.W. Rankin, and A. Fartaj, A Numerical Investigation of the Flowfield of a Supersonic Jet Impinging on a Flat Plate,Proc. 13th Annual Conference of the CFD Society of the CFD Society of Canada (St. Johns, Newfoundland, Canada), July 13 to Aug 3,2005, P. Liu, Ed., CFD Society of Canada, 2005, p 231–237

  25. Matlab Documentation, The Math Works Inc., www.mathworks.com, 2005

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Karimi.

Additional information

This article was originally published inBuilding on 100 Years of Success, Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, OH, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karimi, M., Fartaj, A., Rankin, G. et al. Numerical simulation of the cold gas dynamic spray process. J Therm Spray Tech 15, 518–523 (2006). https://doi.org/10.1361/105996306X146866

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105996306X146866

Keywords

Navigation