Skip to main content
Log in

Novel method for in-flight particle temperature and velocity measurements in plasma spraying using a single CCD camera

  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

A novel, technically simple imaging system for individual, in-flight particle temperature and velocity measurements for plasma and other thermal spray processes is described. A custom double dichroic mirror is used to add spectral resolving capability to a single, black-and-white, fast-shutter digital charge coupled device (CCD) camera. The spectral double images produced by the individual in-flight particles are processed using specialized image processing algorithms. Particle temperature determination is based on two-color pyrometry, and particle velocities are measured from the length of the particle traces during known exposure times. In this paper, experimental results using the first prototype system are presented. Laboratory tests were performed using rotating pinholes to simulate in-flight particles, and plasma spraying experiments were performed with commercial, standard spraying equipment operated with Al2O3 and NiCrAlY powders. The prototype instrument can be readily used to determine velocity and temperature distributions of individual in-flight particles from the imaged region of interest of the plume. Dividing the imaged area into smaller sections, spatial distributions of particle temperature, velocity, and number of detected particles can be studied. The study aims to develop a technically simple, single imaging instrument, which can provide a visual overview of the spray plume in combination with quantitative evaluation of the most important spray particle parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Moreau: in Thermal Spray: Meeting the Challenges of the 21st Century, C. Coddet, ed., ASM International, Materials Park, OH, 1998, pp. 1681–93.

    Google Scholar 

  2. P. Fauchais, J.F. Coudert, and M. Vardelle: Plasma Diagnostics, Academic Press, New York, NY, 1989, pp. 349–445.

    Google Scholar 

  3. J.R. Fincke, W.D. Swank, and C.L. Jeffrey: IEEE Trans. Plasma Sci., 1990, vol. PS-18, pp. 948–57.

    Article  Google Scholar 

  4. T.T. Hoffman and J. Agapakis: J. Thermal Spray Technol., 1992, vol. 1 (1), pp. 19–25.

    Article  Google Scholar 

  5. T. Sakuta and M. Boulos: Rev. Scientific Instruments, 1988, vol. 59 (2), pp. 285–91.

    Article  Google Scholar 

  6. J. Vattulainen, J. Knuuttila, T. Lehtinen, T. Mäntylä, and R. Hernberg: in Thermal Spray: Meeting the Challenges of the 21st Century, C. Coddet, ed., ASM International, Materials Park, OH, 1998, pp. 767–72.

    Google Scholar 

  7. J. Knuuttila, P. Saarenrinne, R. Hernberg, T. Lehtinen, and T. Mäntylä: in Thermal Spray: United Conf. Proc., C.C. Berndt, ed., ASM International, Materials Park, OH, 1997, pp. 577–82.

    Google Scholar 

  8. T. Lehtinen, J. Knuuttila, J. Vattulainen, T. Mäntylä, and R. Hernberg: in Thermal Spray: Practical Solutions for Engineering Problems, C.C. Berndt, ed., ASM International, Materials Park, OH, 1996, pp. 525–30.

    Google Scholar 

  9. W.D. Swank, J.R. Fincke, and D.C. Haggard: in Thermal Spray Science & Technology, C.C. Berndt and S. Sampath, eds., ASM International, Materials Park, OH, 1995, pp. 111–16.

    Google Scholar 

  10. T.J. Quinn: Temperature, Academic Press, London, 1983.

    Google Scholar 

  11. S. Coulombe, M.I. Boulos, and T. Sakuta: Measurement Sci. and Technol., 1995, vol. 6, pp. 383–90.

    Article  CAS  Google Scholar 

  12. C. Moreau, M. Lamontagne, and P. Cielo: “Method and Apparatus for Monitoring the Temperature and Velocity of Plasma Sprayed Particles,” U.S. Patent 5,180,921, 1993.

    Google Scholar 

  13. Http://www.pco.de/, Sensicam SVGA Digital Camera Datasheets, PCO Computer Optics GmbH, 93309 Kelheim, Germany, 1999.

  14. G.E. Healey and R. Kondepudy: IEEE Trans. Pattern Analysis Machine Intelligence, 1994, vol. 16 (3), pp. 267–76.

    Article  Google Scholar 

  15. R.A. Boie and I.J. Cox: IEEE Trans. Pattern Analysis Machine Intelligence, 1992, vol. 14 (6), pp. 671–78.

    Article  Google Scholar 

  16. P. Gougeon and C. Moreau: J. Thermal Spray Technol., 1993, vol. 2, pp. 229–34.

    Article  CAS  Google Scholar 

  17. J. Mishin, M. Vardelle, J. Lesinski, and P. Fauchais: J. Phys. E: Scientific Instruments, 1987, vol. 20, pp. 620–25.

    Article  CAS  Google Scholar 

  18. Http://www.specim.fi/, ImSpector Spectrograph Datasheets, Spectral Imaging Ltd., FIN-90571 Oulu, Finland, 1999.

  19. T. Joutsenoja, J. Stenberg, R. Hernberg, and M. Aho: Appl. Optics, 1997, vol. 30, pp. 1525–35.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vattulainen, J., Hämäläinen, E., Hernberg, R. et al. Novel method for in-flight particle temperature and velocity measurements in plasma spraying using a single CCD camera. J Therm Spray Tech 10, 94–104 (2001). https://doi.org/10.1361/105996301770349556

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105996301770349556

Keywords

Navigation