Skip to main content
Log in

Cold-Spray processing of a nanocrystalline Al−Cu−Mg−Fe−Ni alloy with Sc

  • Reviewed Papers
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

This work describes recent progress in cold-spray processing of conventional and nanocrystalline 2618 (Al−Cu−Mg−Fe−Ni) aluminum alloy containing scandium (Sc). As-atomized and cryomilled 2618+Sc aluminum powder were sprayed onto aluminum substrates. The mechanical behavior of the powders and the coatings were studied using micro-and nanoindentation techniques, and the microstructure was analyzed using scanning and transmission electron microscopy (SEM and TEM). The influence of powder microstructure, morphology, and behavior during deposition on the coating properties was analyzed. This work shows that Al−Cu−Mg−Fe−Ni−Sc coatings with a nanocrystalline grain structure can be successfully produced by the cold-spray process. Inspection of the scientific literature suggests that this is the first time a hardness value of 181 HV has been reported for this specific alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.P. Alkhimov, V.F. Kosarev, and A.N. Papyrin, Gas Dynamic Method for Applying Coating, U.S. Patent 5,302,414, December 4, 1994

  2. C.J. Li and W.Y. Li, Deposition Characteristics of Titanium Coating in Cold Spraying, Surf. Coat. Technol., 2003, 167(2–3), p 278–283

    Article  CAS  Google Scholar 

  3. A.P. Alkhimov, S.V. Klinkov, V.F. Kosarev, and A.N. Papyrin, Gasdynamic Spraying. Study of a Plane Supersonic Two-phase Jet, J. Appl. Mech. Tech. Phys., 1997, 38(2), p 324–330

    Article  CAS  Google Scholar 

  4. R.C. Dykhuizen and R.A. Neiser, Optimizing the Cold Spray Process, Thermal Spray 2003: Advancing the Science and Applying the Technology, B.R. Marple and C. Moreau, Ed., May 5–8, 2003, (Orlando, FL), ASM International, 2003, p 19–26

    Google Scholar 

  5. A.N. Papyrin, V.F. Kosarev, S.V. Klinkov, and A.P. Alkhimov, On the Interaction of High Speed Particles with a Substrate under Cold Spraying, International Thermal Spray Conference, E. Lugscheider and C.C. Berndt, Ed., March 4–6, 2002, (Essen, Germany), DVS Deutscher Verband für Schweißen, 2002, p 380–384

    Google Scholar 

  6. R.C. Dykhuizen, M.F. Smith, D.L. Gilmorew, and R.A. Neiser, Impact of High Velocity Cold Spray Particles, J. Therm. Spray Technol., 1999, 8(4), p 559–564

    Article  CAS  Google Scholar 

  7. D.L. Gilmore, R.C. Dykhuizen, R.A. Neiser, T.J. Roemer, and M.F. Smith, Particle Velocity and Deposition Efficiency in the Cold Spray Process, J. Therm. Spray Technol., 1999, 8(4), p 576–582

    Article  CAS  Google Scholar 

  8. T.H. van Steenkiste, J.R. Smith, and R.E. Teetse, Aluminum Coatings via Kinetic Spray with Relatively Large Powder Particles, Surf. Coat. Technol., 2002, 154(2–3), p 237–252

    Article  Google Scholar 

  9. H. Assadi, F. Gartner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51(15), p 4379–4394

    Article  CAS  Google Scholar 

  10. J. Vlcek, H. Huber, H. Voggenreiter, A. Fischer, E. Lugscheider, and H. Hallen, Kinetic Powder Compaction Applying the Cold Spray Process: A Study on Parameters, Thermal Spray 2001: New Surfaces for a New Millemium, C.C. Berndt, K.A. Khor, and E.F. Lugscheider, Ed., May 28–30, 2001, (Singapore), ASM International, 2001, p 417–422

    Google Scholar 

  11. L. Ajdelsztajn, B. Jodoin, G.E. Kim, and J.M. Sohoenung, Cold Spray Deposition of Nanocrystalline Aluminum Alloys, Metall. Mater. Trans. A, 2005, 26A(3), p 657–666

    Article  Google Scholar 

  12. I.J. Polmear, Recent Developments in Light Alloys, Mater. Trans. JIM, 1996, 37(1), p 12–31

    CAS  Google Scholar 

  13. V. Gerold, On the Structures of Guinier-Preston Zones in Al−Cu alloys. Scripta Metall, 1988, 22(7), p 927–932

    Article  CAS  Google Scholar 

  14. P.G. Shewmon, Transformation in Metals, McGraw-Hill, New York, 1969.

    Google Scholar 

  15. I.J. Polmear and M.J. Couper, Design and Development of an Experimental Wrought Aluminum-alloy for Use at Elevated-Temperatures. Metall. Trans. A. 1988, 19A(4), p 1027–1035

    CAS  Google Scholar 

  16. A. Roósz and H.E. Exner, Ternary Restricted-Equilibrium Phase-Diagrams 2. Practical Application—A luminum-Rich Corner of the Al−Cu−Mg System, Acta Metall. Mater. 1990, 38(10), p 2009–2016

    Article  Google Scholar 

  17. I.N.A. Oguocha and S. Yannacopoulos, Precipitation and Dissolution Kinetics in Al−Cu−Mg−Fe−Ni Alloy 2618 and Al-Alumina Particle Metal Matrix Composite, Mater. Sci. Eng. A, 1997, 231(1–2), p 25–33

    Google Scholar 

  18. J. Majimel, G. Molénat, M.J. Casanove, D. Schuster, D. Denquin, and G. Lapasset, In vestigation of the Evolution of Hardening Precipitates During Thermal Exposure or Creep of a 2650 Aluminium Alloy, Scripta Mater., 2002, 46(2), p 113–119

    Article  CAS  Google Scholar 

  19. L.S. Toropova, D.G. Eskin, M.L. Kharakterova, and T.V. Dobatkina, Advanced Aluminum Alloys Containing Scandium, Gordon and Breach, Amsterdam, The Netherlands, 1998.

    Google Scholar 

  20. D.N. Seidman, E.A. Marquis, and D.C. Dunand, Precipitation Strengthening at Ambient and Elevated Temperatures of Heat-treatable Al(Sc) Alloys, Acta Mater., 2002, 50(16), p 4021–4035

    Article  CAS  Google Scholar 

  21. G.M. Novotny and A.J. Ardell, Precipitation of Al3Sc in Binary Al−Sc Alloys. Mater. Sci. Eng. A, 2001, 318(1–2), p 144–154

    Google Scholar 

  22. E.A. Marquis and D.N. Seidman, Nanoscale Structural Eyolution of Al3Sc Precipitates in Al(Sc) Alloys, Acta Mater., 2001, 49(11), p 1909–1919

    Article  CAS  Google Scholar 

  23. B.Q. Han and E.J. Lavernia, Deformation Mechanisms of Nanostructured Al Alloys. Adv. Eng. Mater., 2005, 7(6), p 457–465

    Article  CAS  Google Scholar 

  24. B.Q. Han, D. Matejczyk, F. Zhou, Z. Zhang, C. Bampton, E.J. Lavernia, and F.A. Mohamed, Mechanical Behavior of a Cryomilled Nanostructured Al-7.5 pct Mg Alloy. Metall. Mater. Trans. A, 2004, 35A(3), p 947–949

    Article  CAS  Google Scholar 

  25. D.B. Witkin and E.J. Lavernia, Synthesis and Mechanical Behavior of Nanostructured Materials via Cryomilling, Prog. Mater. Sci., 2006, 51, p 1–60

    Article  CAS  Google Scholar 

  26. “Standard Specification for Wire Cloth and Sieves for Testing Purposes,” E-11, Annual Book of ASTM Standard, ASTM, Vol. 14.02

  27. X. Li and B. Bhushan, A Review of Nanoindentation Continuous Stiffness Measurement Technique and its Applications, Mater. Charactercation, 2002, 48(1), p 11–36

    CAS  Google Scholar 

  28. L. Ajdelsztajn, A. Zúñiga, B. Jodoin, and E.J. Lavernia, Cold Gas Dynamic Spraying of a High Temperature Al Alloy, Surf, Coat. Technol., 2005, (in press).

  29. T.W. Wright, Shear Band Susceptibility: Work Hardening Materials, Int. J. Plast., 1992, 8(2), p 583–602

    Article  Google Scholar 

  30. J.J. Bertin. Hyper sonic Aerothermodynamics, AIAA, Reston, VA, 1994.

    Google Scholar 

  31. E.O. Hall, The Deformation and Ageing of Mild Steel: III Discussion of Results. Proc. Phys. Soc. London, 1951, B64, p 747–753

    Article  Google Scholar 

  32. N.J. Petch, The Cleavage Strength of Polycrystals, J. Iron. Steel Inst., 1953, 174, p 25–28

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The original version of this paper was published in the CD ROM Thermal Spray Connects: Explore Its Surfacing Potential, International Thermal Spray Conference, sponsored by DVS, ASM International, and IIW International Institute of Welding, Basel, Switzerland, May 2–4, 2005, DVS-Verlag GmbH, Düsseldorf, Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ajdelsztajn, L., Zúñiga, A., Jodoin, B. et al. Cold-Spray processing of a nanocrystalline Al−Cu−Mg−Fe−Ni alloy with Sc. J Therm Spray Tech 15, 184–190 (2006). https://doi.org/10.1361/105996306X107995

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105996306X107995

Keywords

Navigation