Skip to main content
Log in

Mechanisms and kinetics of WC-Co−Cr high velocity oxy-fuel thermal spray coating degradation in corrosive environments

  • Reviewed Papers
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In this work, aspects of the corrosion behavior of WC-Co−Cr high velocity oxy-fuel (HVOF) thermal spray coatings have been assessed using a combination of x-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) to understand the corrosion mechanisms and, in particular, the electrochemical interactions between phases. Direct curent electrochemical accelerated corrosion techniques (potentiodynamic and potentiostatic tests) were performed to evaluate the corrosion kinetics of the coating. After the corrosion tests, the solution was analyzed using the inductively coupled plasma (ICP) technique, and a considerable amount of dissolved tungsten was detected. By combining information from XPS, SEM, ICP, and anodic polarization results, it is possible to propose a number of key reactions that can take place during WC-Co−Cr coating degradation, thus enabling the susceptible components of the coating to be identified. The implications of these findings for coating durability are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R.C. Tucker Jr., Thermal Sprays Coatings, ASM Handbook, Vol. 5, Surface Engineering, ASM International, 1994, p 497–509

    Google Scholar 

  2. V.A.D. Souza, A. Neville, L. Phillips, P.A. Smith, P. Gourdji, and H.W. Wang, Meeting the Challenges in Pump Durability by Advanced Surface Engineering, Second International Symposium on Advanced Materials for Fluid Machinery, Institution of Mechanical Engineers Event Transactions, Feb 26, Professional Engineering Publishing Limited, The Institution of Mechanical Engineers, London, UK, 2004, p 95–111

    Google Scholar 

  3. V.A.D. Souza and A. Neville, Corrosion and Synergy in a WC-Co−Cr HVOF Thermal Spray Coating-Understanding Their Role in Erosion-Corrosion Degradation, Wear, 2005, 259, p 171–180.

    Article  CAS  Google Scholar 

  4. R.J. Wood and S.P. Hutton, The Synergistic Effect of Erosion and Corrosion: Trends in Published Results, Wear, 1990, 140, p 387–394

    Article  CAS  Google Scholar 

  5. M.M. Stack, s. Zhou, and R.C. Newman, Identification of Transitions in Erosion-Corrosion Regimes in Aqueous Environments, Wear, 1995, 186–187, p 523–532

    Article  Google Scholar 

  6. A. Fan, J. Long, and Z. Tao, Failure Analysis of Impeller of a Slurry Pump Subjected to Corrosive Wear, Wear, 1995, 81–183, p 876–882

    Google Scholar 

  7. M. Matsumura, Erosion Corrosion of Metallic Materials in Slurries, Corrosion Review, 1994, 12, 3–4, p 321–340

    CAS  Google Scholar 

  8. A.M. Human and H.E. Exner, Electrochemical Behaviour of Tungsten-Carbide Hardmetals, Mater Sci. Eng., 1996, A209, p 180–191

    CAS  Google Scholar 

  9. A.M. Human, B. Roebuck, and H.E. Exner, Electrochemical Polarization and Corrosion Behaviour of Cobalt and Co (W,C) Alloys in 1 N Sulphuric Acid, Mater. Sci. Eng., 1998, A241, p 202–210

    CAS  Google Scholar 

  10. C. Monticelli, A. Frignani, and F. Zucchi, Investigation on the Corrosion Process of Carbon Steel Coated by HV OFWC/Co Cermets in Neutral Solution, Corros. Sci., 2004, 46, p 1225–1237

    Article  CAS  Google Scholar 

  11. A. Trueman, D.P. Schweinsberg, and G.A. Hope, A Study of the Effect of Cobalt Additions on the Corrosion of Tungsten Carbide/Carbon Steel Metal Matrix Composites, Corros Sci., 1999, 41, p 1377–1389

    Article  CAS  Google Scholar 

  12. E.J. Wentzel and C. Allen, The Erosion-Corrosion Resistance of Tungsten-Carbide Hard Metals, Int. J. Refract. Met. Hard Mater., 1997, 15, p 81–87

    Article  CAS  Google Scholar 

  13. H. Scholl, B. Hofman, and A. Rauscher, Anodic Polarization of Cemented Carbides of the Type [(WC,M);M=Fe, Ni or Co] in Sulphuric Acid Solution, Electrochim. Acta, 1992, 37 (3), p 447–452

    Article  CAS  Google Scholar 

  14. M.H. Ghandelari, Anodic Behaviour of Cemented WC-6%Co Alloy in Phosphoric Acid Solutions, J. Electrochem. Soc., 1980, 127 (10), p 2144–2147

    Article  Google Scholar 

  15. W.J. Tomlinson and C.R. Linzell, Anodic Polarization and Corrosion of Cemented Carbides with Cobalt and Nickel Binders, J. Mater. Sci., 1988, 23, p 914–918.

    Article  CAS  Google Scholar 

  16. S. Imasato, S. Sakaguchi, and Y. Hayashi, Corrosion Behaviour of WC-Ni−Cr Cemented Carbide in NaOH Solution, Nippon Tungten Review, 2000, 32, p 8–16

    CAS  Google Scholar 

  17. M. Takeda, N. Morihiro, R. Ebara, and Y. Harada, Corrosion Behaviour of Thermally Sprayed WC Coating in Na2SO4 Aqueous Solution. Mater. Trans., 2002, 43, 11, p 2860–2865

    Article  CAS  Google Scholar 

  18. A. Warren, A. Nylund, and I. Oleford, Oxidation of Tungsten and Tungsten Carbide in Dry and Humid Atmospheres, Int. J. Refractory Metals Hard Mater., 1996, 14, p 345–353

    Article  CAS  Google Scholar 

  19. J.D. Voorhies, Electrochemical and Chemical Corrosion of Tungsten Carbide (WC), J Electrochem. Soc.: Electrochem. Sci. Technol., 1972, 119, 2, p 219–222

    CAS  Google Scholar 

  20. K.M. Andersson and L. Bergstrom, Oxidation and Dissolution of Tungsten Carbide Powder in Water, Int. J. Ref. Metals Hard Mater., 2000, 18, p 121–129

    Article  CAS  Google Scholar 

  21. B. Bozzini, G.P. De Gaudenzi, A. Fanigliulo, and C. Mele, Electrochemical Oxidation of WC in Acidic Sulphate Solution, Corros. Sci., 2004, 46, p 453–469

    Article  CAS  Google Scholar 

  22. I. Nikolov, G. Papazov, and V. Naidenov, Activity and Corrosion of Tungsten Carbide Recombination Electrodes during Lead/Acid Battery Operation, J. Power Sources, 1992, 40, p 333–340

    Article  CAS  Google Scholar 

  23. I. Nikolov and T. Vitanov, The Effect of Method of Preparation on the Corrosion Resistance and Catalytic Activity during Corrosion of Tungsten Carbide., I. Corrosion Resistance of Tungsten Carbide in Sulfuric Acid, and II. Changes in the Catalytic Activity of Tungsten Carbides during the Corrosion Process, J. Power Sources, 1980, 5, p 273–291

    Article  CAS  Google Scholar 

  24. “G5-Reference Test Method for Making Potentionstatic and Potentiodynamic Anodic Polarisation Measurements,” “G59-Practice for Conducting Potentiodynamic Polarisation Resistance Measurements,” Annual Book of ASTM Standards 2002, Section 03, 03-02, G 5 and G 59, ASTM 2002

  25. V.A.D. Souza and A. Neville, Corrosion of WC-Co−Cr Cermet Coatings Using In-Situ Atomic Force Microscopy, Advancing the Science & Applying the Technology, B.R. Marple, and C. Moreau, Ed., Proceedings of 2003 International Thermal Spray Confernece ITSC, 5–8 May, Orlando, FL, ASM International 1, 2003, p 395–404

  26. V.A.D. Souza, “Corrosion and Erosion-Corrosion of WC-based Cermet Coatings—A Kinetic and Mechanistic Study,” Ph.D. Thesis, Heriot-Watt University, Scotland, August 2004

    Google Scholar 

  27. R.D. Armstrong, K. Edmondson, and R.E. Firman, The Anodic Dissolution of Tungsten in Alkaline Solution, J. Electroanal. Chem., 1972, 40 (1), p 19–28

    Article  CAS  Google Scholar 

  28. M.S. El-Basiouny, F.E.T. Heakel, and M.M. Hefny, On the Electro-Chemical-Behavior Of Tungsten Corrosion Behavior Of Tungsten in Buffer Solutions as Revealed by Potential and Impedance Measurement at Open Circuit Potential, Corrosion, 1981, 37, p 175–178

    CAS  Google Scholar 

  29. M. Anik and K. Osseo-Asare, Effect of pH on the Anodic Behavior of Tungsten, J. Electrochem. Soc., 2002, 149, 6, p B224-B233

    Article  CAS  Google Scholar 

  30. S. Sutthiruangwong, G. Mori, and R. Kosters, Passivity and Pseudopassivity of Cemented Carbides, Int. J. Refract. Met. Hard Mater., 2005, 23, p 129–136

    Article  CAS  Google Scholar 

  31. I. Milosev and H-H. Strehblow, The Composition of the Surface Passive Film Formed on CoCrMo Alloy in Simulated Physiological Solution, Electrochimica Acta, 48, Issue 19, (2003), p 2767–2774

    Article  CAS  Google Scholar 

  32. T. Ohtsuka and N. Sato, Two-Layer Formation of Passivating Films on Cobalt in Neutral Solution, J. Electrochem. Soc., 1981, 128, 12, p 2522–2528

    Article  CAS  Google Scholar 

  33. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, NACE, Cebelcor, Houston, TX, 1974

    Google Scholar 

  34. R.K. Sadangi, G. Skandan, and B.H. Kear, Factors Controlling Decarburisation in HVOF Sprayed Nano-WC/Co Hardcoatings, Scripta Mater., 2001, 44, p 1703–1707

    Article  Google Scholar 

  35. D.G. McCartney, A. Stewart, and P.H. Shipway, Micro Structural Evolution in Thermally Sprayed WC-Co Coatings: Comparison Nanocomposite and Conventional Starting Powders, Acta Mater., 2000, 48, p 1593–1604

    Article  Google Scholar 

  36. T. Magnin, A. Chambreuil, and B. Bayle, The Corrosion-Enhanced Plasticity Model for Stress Corrosion Cracking in Ductile fee Alloys, Acta Mater., 1996, 44, 4, p 1457–1470

    Article  CAS  Google Scholar 

  37. S. Wirojanupatump, P.H. Shipway, and D.G. McCartney, The Influence of HVOF Powder Feedstock Characteristics on the Abrasive Wear Behaviour of Cr x C y −NiCr Coatings, Wear, 2001, 249, p 829–837

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souza, V.A.D., Neville, A. Mechanisms and kinetics of WC-Co−Cr high velocity oxy-fuel thermal spray coating degradation in corrosive environments. J Therm Spray Tech 15, 106–117 (2006). https://doi.org/10.1361/105996306X92677

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105996306X92677

Keyword

Navigation