Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Scaling Low-Latency Optical Packet Switches to a Thousand Ports

Not Accessible

Your library or personal account may give you access

Abstract

Optical packet switches that scale to thousands of input/output ports might find their application in next-generation datacenters (DCs). They will allow interconnecting the servers of a DC in a flat topology, providing higher bandwidth and lower latency in comparison with currently applied electronic switches. Using a simple analytic model that allows computing end-to-end latency and throughput, we show that optical interconnects that employ a centralized (electronic) controller cannot scale to thousands of ports while providing end-to-end latencies below 1μs and high throughput. We therefore investigate architectures with highly distributed control. We present a strictly non-blocking wavelength division multiplexing architecture with contention resolution based on wavelength conversion. We study the packet loss probability of such architecture for different implementations of the contention resolution functionality. Furthermore, we show that the proposed architecture, applied in a short link with flow control, provides submicrosecond end-to-end latencies and allows high load operation, while scaling over a thousand ports.

©2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Scaling Photonic Packet Switches to a Large Number of Ports [Invited]

H. J. S. Dorren, S. Di Lucente, J. Luo, O. Raz, and N. Calabretta
J. Opt. Commun. Netw. 4(9) A82-A89 (2012)

On the Performance of a Large-Scale Optical Packet Switch Under Realistic Data Center Traffic

Nicola Calabretta, Roger Pueyo Centelles, Stefano Di Lucente, and Harmen J. S. Dorren
J. Opt. Commun. Netw. 5(6) 565-573 (2013)

Numerical and experimental study of a high port-density WDM optical packet switch architecture for data centers

S. Di Lucente, J. Luo, R. Pueyo Centelles, A. Rohit, S. Zou, K. A. Williams, H. J. S. Dorren, and N. Calabretta
Opt. Express 21(1) 263-269 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (17)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.