Skip to main content
Log in

Practicality of Tetragonal Nano-Zirconia as a Prospective Sorbent in the Preparation of 99Mo/99mTc Generator for Biomedical Applications

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

The feasibility of using tetragonal nano-zirconia (t-ZrO2) as an effective sorbent for developing a 99Mo/99mTc chromatographic generator was demonstrated. The structural characteristics of the sorbent matrix were investigated by different analytical techniques such as XRD, BET surface area analysis, FT-IR, TEM etc. The material synthesized was nanocrystalline, in tetragonal phase with an average particle size of ~7 nm and a large surface area of 340 m2 g−1. The equilibrium sorption capacity of t-ZrO2 is >250 mg Mo g−1. The present study indicates that 99Mo is both strongly and selectively retained by t-ZrO2 at acidic pH and 99mTc could be readily eluted from it, using 0.9% NaCl solution. A 9.25 GBq (250 mCi) t-ZrO2 based chromatographic 99Mo/99mTc generator was developed and its performance was repeatedly evaluated for 10 days. 99mTc could be eluted with >85% yield having acceptable radionuclidic, radiochemical and chemical purity for clinical applications. The compatibility of the product in the preparation of 99mTc labeled formulations such as 99mTc-EC and 99mTc-DMSA was evaluated and found to be satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Eckelman WC (2009) J Am Coll Cardiol I 2:364–368

    Google Scholar 

  2. Arano Y (2002) Ann Nucl Med 16:79–93

    Article  CAS  Google Scholar 

  3. Knapp FF Jr, Mirzadeh S (1994) Eur J Nucl Med 21:1151–1165

    Article  Google Scholar 

  4. Molinski VJ (1982) Int J Appl Radiat Isot 33:811–819

    Article  CAS  Google Scholar 

  5. Boyd RE (1982) Int J Appl Radiat Isot 33:801–809

    Article  CAS  Google Scholar 

  6. Ram R, Chakravarty R, Pamale Y, Dash A, Venkatesh M (2009) Chromatographia 69:497–501

    Article  CAS  Google Scholar 

  7. Taskaev E, Taskaeva M, Nikolov M (1995) Appl Radiat Isot 46:13–16

    Article  CAS  Google Scholar 

  8. Boyd RE (1997) Appl Radiat Isot 48:1027–1033

    Article  CAS  Google Scholar 

  9. Evans JV, Moore PW, Shying ME, Sodeau JM (1987) Appl Radiat Isot 38:19–23

    Article  CAS  Google Scholar 

  10. Moore PW, Shying ME, Sodeau JM, Evans JV, Maddalena DJ, Farrington KH (1987) Appl Radiat Isot 38:25–29

    Article  CAS  Google Scholar 

  11. Mansur MS, Mushtaq A, Jehangir M (2006) Radiochim Acta 94:107–111

    Article  CAS  Google Scholar 

  12. Seifert S, Wagner G, Eckardt A (1994) Appl Radiat Isot 45:577–579

    Article  CAS  Google Scholar 

  13. Sarkar SK, Arjun G, Saraswathy P, Ramamoorthy N (2001) Appl Radiat Isot 55:561–567

    Article  CAS  Google Scholar 

  14. Mushtaq A (2004) Nucl Med Commun 25:957–962

    Article  CAS  Google Scholar 

  15. Gomez JS, Correa FG (2002) J Radioanal Nucl Chem 254:625–628

    Article  Google Scholar 

  16. Mushtaq A, Mansoor MS, Karim HMA, Khan MA (1991) J Radioanal Nucl Chem 147:257–261

    Article  CAS  Google Scholar 

  17. Masakazu T, Katsuyoshi T, Koji I, Kiyoyuki K, Mizuka N, Yoshi H (1997) Appl Radiat Isot 48:607

    Article  Google Scholar 

  18. Cumbal L, Greenleaf J, Leun D, Sengupta AK (2003) React Funct Polym 54:167–180

    Article  CAS  Google Scholar 

  19. Okuyama K, Lenggoro IW (2003) Chem Eng Sci 58:537–547

    Article  CAS  Google Scholar 

  20. Sarkar S, Cara PW, Mcneff CV, Subramanian A (2003) J Chromatogr B 790:143–152

    Article  CAS  Google Scholar 

  21. Ragai J, Selim ST (1987) J Colloid Interface Sci 115:139–146

    Article  CAS  Google Scholar 

  22. Chakravarty R, Shukla R, Ram R, Gandhi S, Dash A, Venkatesh M, Tyagi AK (2008) J Nanosci Nanotechnol 8:4447–4452

    Article  CAS  Google Scholar 

  23. Chakravarty R, Dash A, Venkatesh M (2009) Chromatographia 69:1363–1371

    Article  CAS  Google Scholar 

  24. Chakravarty R, Shukla R, Tyagi AK, Dash A, Venkatesh M (2010) Appl Radiat Isot 68:229–238

    Article  CAS  Google Scholar 

  25. Chakravarty R, Shukla R, Ram R, Venkatesh M, Dash A, Tyagi AK (2010) ACS Appl Mater Interfaces 2(7):2069–2075

    Article  CAS  Google Scholar 

  26. Bhagwat M, Ramaswamy V (2004) Mater Res Bull 39:1627–1640

    Article  CAS  Google Scholar 

  27. Rezaei M, Alavi SM, Sahebdelfa S, Yan Z (2006) Powder Technol 168:59–63

    Article  CAS  Google Scholar 

  28. Chuah GK, Jaenicke S, Cheong SA, Chan KS (1996) Appl Catal A Gen 145:267–284

    Article  CAS  Google Scholar 

  29. Tyagi B, Sidhpuria K, Shaik B, Jasra RV (2006) Ind Eng Chem Res 45:8643–8650

    Article  CAS  Google Scholar 

  30. Liu XM, Lu GQ, Yan ZF (2004) J Phys Chem B 108:15523–15528

    Article  CAS  Google Scholar 

  31. Chen F, Huang L, Zhong Z, Gan GJ, Kwan SM, Kooli F (2006) Mater Chem Phys 97:162–166

    Article  CAS  Google Scholar 

  32. Yin SF, Xu BQ (2003) Chemphyschem 3:277–281

    Article  Google Scholar 

  33. Guo GY, Chen YL (2005) J Solid State Chem 178:1675–1682

    Article  CAS  Google Scholar 

  34. British Pharmacopoeia Commission, British Pharmacopoeia (2008) The Stationery Office, Norwich, UK. (www.pharmacopoeia.org.uk)

  35. Perkins A, Hilson A, Hall J (2008) Brit Med J 337:1577

    Article  Google Scholar 

  36. Homogeneous Aqueous Solution Nuclear Reactors for the Production of 99Mo and other Short Lived Radioisotopes (2008) IAEA-TECDOC-1601, IAEA, Vienna

  37. Ruth T (2009) Nature 457:536–537

    Article  CAS  Google Scholar 

  38. Parks GA (1967) Adv Chem Ser 67:121–160

    Article  Google Scholar 

  39. Spanos N, Lycourghiotis A (1994) J Catal 147:57–71

    Article  CAS  Google Scholar 

  40. Steigman J (1982) Int J Appl Radiat Isot 33:829–834

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. V. Venugopal, Director, Radiochemistry and Isotope Group, BARC for his valuable suggestions during the course of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashutosh Dash.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakravarty, R., Shukla, R., Ram, R. et al. Practicality of Tetragonal Nano-Zirconia as a Prospective Sorbent in the Preparation of 99Mo/99mTc Generator for Biomedical Applications. Chroma 72, 875–884 (2010). https://doi.org/10.1365/s10337-010-1754-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-010-1754-z

Keywords

Navigation