Skip to main content
Log in

Single-wall carbon nanotube nanobomb agents for killing breast cancer cells

  • Rapid Communication
  • Published:
NanoBiotechnology

Abstract

We report the first application of single-wall carbon nanotubes (SWCNT) as potent therapeutic nanobomb agents for killing breast cancer cells. We show here that by adsorbing water molecules in SWCNT sheets or loosely adsorbed on top of cells, potent nanobombs were created that heated the water molecules inside them to more than 100°C upon exposure to laser light of 800 nm at light intensities of approx 50–200 mW/cm2. Conversion of optical energy into thermal energy, and the subsequent confinement of thermal energy in SWCNT, caused the water molecules to evaporate and develop extreme pressures in SWCNT causing them to explode in solutions. Co-localized nanobombs killed human BT474 breast cancer cells in physiological phosphate-buffered saline (PBS) solution. Cells that were treated with nanobombs exploded into fragments, while the surrounding cells not treated with nanobombs were viable. SWCNT-based nanobomb agents can potentially outperform most nanotechnological approaches in killing cancer cells without toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferrari, M. (2005), Nat. Rev. Cancer 5, 161–171.

    Article  CAS  Google Scholar 

  2. Schmittel, M., Kalsani, V., Fenske, D., and Wiegrefe, A. (2004), Chem. Communi. 5, 490–491.

    Article  Google Scholar 

  3. Yan, H., Finkelstein, G., Reif, J. H., and LaBean, T. H. (2003), Science 301, 1882–1884.

    Article  CAS  Google Scholar 

  4. Spillmen, H., Dmitriev, A., Lin, N., Messina, P., Barth, J. V., and Kern, K. (2003), J. Amer. Chem. Soci. 125, 10,725–10,728.

    Google Scholar 

  5. Allain, L. R. and Dinh, T. V. (2002), Anal. Chim. Acta 469, 149–154.

    Article  CAS  Google Scholar 

  6. Lizard, G., Duvillard, L., Wedemeyer, N., et al. (2003), Pathol. Biol. 51, 418–427.

    Article  CAS  Google Scholar 

  7. Dubertret, S. B., Norris, D. J., Noireaux, V., Brivanlou, A. H., and Libchaber, A. (2002), Science 298, 1759–1762.

    Article  CAS  Google Scholar 

  8. Mansson, S. A., Balaz, M., Bunk, R., et al. (2004), Biochem. Biophys. Res. Communi. 314, 529–534.

    Article  CAS  Google Scholar 

  9. Wu, X., Liu, J., Haley, K. N., et al. (2003), Nat. Biotechnol. 21, 41–46.

    Article  CAS  Google Scholar 

  10. Heverhagen, J. T., Fahr, A., Muller, R., and Alfke, H. (2004), Magne. Reson. Imaging 22, 483–487.

    Article  CAS  Google Scholar 

  11. Toyoda, K., Tooyema, I., Kato, M., et al. (2004), Neuroreport 15, 589–593.

    Article  CAS  Google Scholar 

  12. Roy, I., Pudavar, H. E., Bergey, E. J., et al. (2003), J. Ameri. Chem. Soci. 125, 7860–7865.

    Article  CAS  Google Scholar 

  13. Hirsch, L., Stafford, R. J., Bankson, J. A., et al. (2003), Proc. Natl. Acad. Sci. USA 100, 12,549–12,554.

    Article  Google Scholar 

  14. Loo, C., Lin, A., Hirsch, L., et al. (2004), Technolo. Cancer Res. Treat. 3, 33–40.

    CAS  Google Scholar 

  15. Kam, N. W. S., O’Connell, M., Wisdom, J. A., and Dai, H. (2005), Proc. Natl. Acad. Sci. USA 102, 11,600–11,605.

    CAS  Google Scholar 

  16. Lam, C. W., James, J. T., McCluskey, R., and Hunter, R. L. (2004), Toxicol. Sci. 77, 126–134.

    Article  CAS  Google Scholar 

  17. Ajayan, P., Terrones, M., de la Gaurdia, A., et al. (2002). Science 296, 705.

    Article  CAS  Google Scholar 

  18. O’Connell, M. J., Bachilo, S. M., Huffman, C. B. (2002), Science 297, 593–596.

    Article  CAS  Google Scholar 

  19. Bachilo, S. M., Strano, M. S., Kittrell, C., Hauge, R. H., Smalley, R. E., and Weisr, R. B. (2002), Science 298, 2361–2366.

    Article  CAS  Google Scholar 

  20. Rao, A. M., Eklund, P. C., Bandow, S., Thess, A., and Smalley, R. E. (1997), Nature 388, 257–259.

    Article  CAS  Google Scholar 

  21. Berber, S., Kwon, Y. K., and Tomanek, D. (2000), Phys. Rev. Lett. 84, 4613.

    Article  CAS  Google Scholar 

  22. Kim, P., Shi, L., Majumdar, A., and McEuen, P. L. Phys. Rev. Lett. 87, 215502.

  23. Osman M. A. and Srivatsava, D. (2001), Nanotechnology, 12, 21.

    Article  CAS  Google Scholar 

  24. Hone, J., Whitney, M., Piskoti, C., and Zettl, A. (1999), Phys. Rev. B, 59, R2514.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balaji Panchapakesan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panchapakesan, B., Lu, S., Sivakumar, K. et al. Single-wall carbon nanotube nanobomb agents for killing breast cancer cells. Nanobiotechnol 1, 133–139 (2005). https://doi.org/10.1385/NBT:1:2:133

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/NBT:1:2:133

Key Words

Navigation