Skip to main content
Log in

Recent progress on immobilization of enzymes on molecular sieves for reactions in organic solvents

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Enzymes exhibit high selectivity and reactivity under normal conditions but are sensitive to denaturation or inactivation by pH and temperature extremes, organic solvents, and detergents. To extend the use of these biocatalysts for practical applications, the technology of immobilization of enzymes on suitable supports was developed. Recently, these immobilized biomolecules have been widely used and a variety of immobilization supports have been studied. The majority of these supports cover diverse kinds of materials such as natural or synthetic polyhydroxylic matrives, porous in organic carriers, and all kinds of functional polymers. Microporous molecular sieve, zeolite, has attracted extensive interest in research because of its distinctive physical properties and geochemistry. Recently, with the discovery of a new family of mesoporous molecular sieves, MCM-41, this series of materials shows great potential for various applications. Molecular sieves involve such a series of materials that can discriminate between molecules, particularly on the basis of size. As support materials, they offer interesting properties, such as high surface areas, hydrophobic or hydrophilic behavior, and electrostatic interaction, as well as mechanical and chemical resistance, making them attractive for enzyme immobilization. In this article, different types of molecular sieves used in different immobilization methods including physical adsorption on zeolite, entrapment in mesoporous and macroporous MCM series, as well as chemically covalent binding to functionalized molecular sieves are reviewed. Key factors affecting the application of this biotechnology are discussed systematically, and immobilization mechanisms combined with newly developed techniques to elucidate the interactions between matrixes and enzyme molecules are also introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adlercreutz, P. (1996) in Enzymatic Reaction in Organic Media, Koskinen, A. M. P. and Klibalov, A.M., eds., Blackie Academic & Professional, London, pp. 9–39.

    Google Scholar 

  2. Margolin, A. L., Delinck, D. L., and Whalon, M. R. (1990), J. Am. Chem. Soc. 112, 2849–2852.

    Article  CAS  Google Scholar 

  3. Xing, G. W., Tian, G. L., and Ye, Y. H. (1998), J. Peptide Res. 52, 300–304.

    Article  CAS  Google Scholar 

  4. Ye, Y. H., Tian, G. L., Xing, G. W., et al. (1998), Tetrahedron 54, 12,585–12,596.

    Article  CAS  Google Scholar 

  5. Liu, P., Tian, G. L., Lo, W. H., Lee, K. S., and Ye, Y. H. (2002), in Proceedings of the 6th Chinese International Peptide Symposium, Xu, J. C. and Tam, J. P. (eds.), Kluwer Academic, The Netherlands, pp. 225–226.

    Google Scholar 

  6. Yan, A. X., Xing, G. W., Ye, Y. H., Tian, G. L., Wong, M. S., and Lee, K. S. (2000), Tetrahedron Lett. 41, 5379–5381.

    Article  CAS  Google Scholar 

  7. Wong, C. H., Schuster, M., Wang, P., and Sears, P. (1993), J. Am. Chem. Soc. 115, 5893–5901.

    Article  CAS  Google Scholar 

  8. Miyazawa, T., Minowa, H., Miyamoto, T., et al. (1997), Tetrahedron Asymmetry 8, 367–370.

    Article  CAS  Google Scholar 

  9. Lazdunski, M. and Delaage, M. (1965), Biochim. Biophys. Acta 105, 541–561.

    PubMed  CAS  Google Scholar 

  10. Rogalska, E., Ransac, S., and Verger, R. (1990), J. Biol. Chem. 265, 20,271–20,276.

    CAS  Google Scholar 

  11. Adlercreutz, P. (1991), Eur. J. Biochem. 199, 609–614.

    Article  PubMed  CAS  Google Scholar 

  12. Heller, A. and Pishko, M. V. (2000), Patent US6 16 2611.

  13. Say, J., Tomasco, M. F., Heller, A., Gal, Y., Aria, B., Heller, E., Plante, P. J., and Vreeke, M. S. (2000), Patent US6 103033.

  14. Takeshi, O., Hirotoshi, I., Hiroko, S., Takeshi, H., Shozo, I., and Masaaki, I. (1989), Patent JP1063390A2.

  15. Sekisui Chem. Ind. Co. Ltd. (1996), Patent JP08109138-A.

  16. Ettner, N., Mahler, T., Schaumann, E., and Schink, M. (2001), Patents AU200045587-A, DE19920262-A1, and WO200066092-A2.

  17. Christensen, M. W., Kirk, O., and Pekersen, C. (1999), Patents US6156548-A, WO9933964-A1, AU9915566-A, and EP1042458-A1.

  18. Le Fevre, G. N. and Saville, B. A. (1999), Patent US5998183.

  19. Mustranta, A., Poutanen, K., Heikkila, H., and Sarkki, M. L. (1999), Patent US5932452.

  20. Christensen, M. W., Kirk, O., and Pedersen, C. (2000), Patent US6156548.

  21. Pedersen, S., Larsen, A. M. and Aasmul, P. (1998), Patent US5776741.

  22. Scouten, W. H. (1987), in Methods in Enzymology, vol. 135, Immobilited Enzymes and Cells: Part B, Colowick, S. P. and Kaplan, N. O. (eds.), Academic, London, pp. 30–65.

    Google Scholar 

  23. Masaaki, S. and Yoshihide, K. (1996), Patent JP8205866A2.

  24. Yuan, Y. (2001), Patent US6153416-A.

  25. Yuan, Y. K. (2000), Patent US6153416.

  26. Japan Atomic Energy Research Institute (1976), Patents JP50078641-A and JP79021868-B.

  27. Hirotoshi, I., Masaaki, I., Takeshi, H., Hiroko, S., and Takeshi, S. (1990), Patent JP2109980A2.

  28. Thomas, R. L. and McKamy, D. L. (1992), Patent US5130237.

  29. Basri, M., Samsudin, S., Binahmad, M., et al. (1999), Appl. Biochem. Biotechnol. 81, 205–217.

    Article  PubMed  CAS  Google Scholar 

  30. Muller-Schulte, D. (2001), Patent US6204033.

  31. Dubin, P. L. and Wang, Y. F. (1999), Patent US5922531.

  32. Ribeiro, F. R., Alvarez, F., Henriques, C., et al. (1995), J. Mol. Catal. A: Chem. 96, 245–270.

    Article  Google Scholar 

  33. Parton, R., Vos, D. D., and Facobs, P. A. (1992), in Zeolite Microprous Solids: Synthesis. Structure and Reactivity, Derouane, E. G., ed. Kluwer Academic, The Netherlands, pp. 555–578.

    Google Scholar 

  34. Goncalves, A. P. V., Lopes J. M., Lemos, F., et al. (1996), J. Mol. Catal. B: Enzymat 1, 53–60.

    Article  CAS  Google Scholar 

  35. Serralha, F. N., Lopes, J. M., Lemos, F., et al. (1998), J. Mol. Catal. B: Enzymat. 4, 303–311.

    Article  CAS  Google Scholar 

  36. Xing, G. W., Li, X. W., Tian, G. L., and Ye, Y. H. (2000), Tetrahedron 56, 3517–3522.

    Article  CAS  Google Scholar 

  37. Lie, E. and Molin, G. (1991), J. Chem. Tech. Biotechnol. 50, 549–553.

    CAS  Google Scholar 

  38. Zaks, A. and Klibarrov, A. M. (1998), J. Biol. Chem. 263, 8017–8021.

    Google Scholar 

  39. Halling, P. J. (1990), Biochim. Biophys., Acta 1040, 225–228.

    CAS  Google Scholar 

  40. Luan, Z. H., He, H. Y., Zhou, W. Z., and Klinowski, I. (1998) J. Chem. Soc. Faraday Trans. 94, 979–983.

    Article  CAS  Google Scholar 

  41. Luan, Z. H., Zhao, D., Klinowski, J., and Kevan, L. (1998), Stud. Surf. Sci. Catal. 117, 103–110.

    Article  CAS  Google Scholar 

  42. Thomas, J. M. (1997), in Electron, Proceedings of the International Centennial Symposium on the Electron, Kirkland, A., and Brown, P. D. (eds.), OM Communications, London, pp. 158–182.

    Google Scholar 

  43. Romero, A. A., Alba, M. D., and Klinowski, J. (1998), J. Phys. Chem. B 102, 123–128.

    Article  CAS  Google Scholar 

  44. Rupley, J. A., Gratton, E., and Careri, G. (1983), Trends Biochem. Sci. 8, 18–22.

    Article  CAS  Google Scholar 

  45. Ullmann, D., Bordusa, F., Salchert, K., and Jakubke, H.-D. (1996), Tetrahedron: Asymm. 7, 2047–2054.

    Article  Google Scholar 

  46. Tian, G. L., Xing, G. W., and Ye, Y. H. (1998), Chin. J. Organ. Chem. 18, 11–19.

    Google Scholar 

  47. Goncalves, A. P. V., Lopes, J. M., Lemos, F., et al. (1997), Enzyme Microb. Technol. 20, 93–101.

    Article  CAS  Google Scholar 

  48. Wehtje, E. (1992), PhD thesis, University of Lund, Sweden.

  49. Liu, B. H., Hu, R. Q., Liu, H. Y., and Deng J. Q. (1998), Acta Chimica Simica 56, 682–687.

    CAS  Google Scholar 

  50. Beck, J. S., Vartuli, J. C., Roth, W. J., et al. (1992) J. Am. Chem. Soc. 114, 10,834–10,843.

    Article  CAS  Google Scholar 

  51. Diaz, J. F. and Balkus, K. J., Jr. (1996), J. Mol. Catal. B: Enzymat. 2, 115–126.

    Article  CAS  Google Scholar 

  52. Gimon-Kinsel, M. E., Jimenez, V. L., Washmon, L., et al., (1998), Stud. Surf. Sci. Catal. 117, 373–380.

    CAS  Google Scholar 

  53. Takahashi, H., Li, B., Sasaki, T., et al. (2001), Microporous and Mesoporous Materials 44–45, 755–762.

    Article  Google Scholar 

  54. He, J., Li, X. F., Evans, D. G., and Duan, X. (2000), J. Mol. Catal. B: Enzymat. 11, 45–53.

    Article  Google Scholar 

  55. Humphrey, H. P., Yiu, P. A., Wright, N., and Botting, P. (2000), Abstracts of the International Symposium on Mesoporous Molecular Sieves (Poster No. 145), Quebec City, Canada, August 27–September 2, 2000.

  56. Mody, H. M., Mody, K. H., and Jasra, R. V. (2000), Abstracts of the International Symposium on Mesoporous Molecular Sieves (Poster No. 141), Quebec City, Canada, August 27–September 2, 2000.

  57. Gura, S. and Margel, S. (2000), Patents AU9941613-A and WO9962079-A1.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Hua Ye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, AX., Li, XW. & Ye, YH. Recent progress on immobilization of enzymes on molecular sieves for reactions in organic solvents. Appl Biochem Biotechnol 101, 113–129 (2002). https://doi.org/10.1385/ABAB:101:2:113

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:101:2:113

Index Entries

Navigation