Skip to main content
Log in

Sulfated polysaccharides from red microalgae have antiinflammatory properties in vitro and in vivo

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The primary goal of the present research was to determine whether sulfated polysaccharides derived from red microalgae possess anti inflammatory properties when directed against specific parameters of human skin inflammation. These unique biopolymers were studied in both in vitro and in vivo models of skin inflammation. Human subjects were recruited to participatein a study in which the polysaccharide material was applied topically and shown to inhibit cutaneousery thema induced by a known irritant. Leukocyte migration from capillary blood intosites of inflammation is an essential component of the inflammatory process and occurs in a series of steps, two of which are adhesion and chemotaxis. In vitro, the polysaccharide material primarily inhibited the migration of polymorphonuclear leukocytes (PMNs) toward a standard chemoattractant molecule and also partially blocked adhesion of PMNs to endothelial cells. The data obtained strongly suggest that sulfated polysaccharides derived from red microalgae have significant beneficial potential for use in topical products. In addition, the data suggested that the anti inflammatory mechanism for the polysaccharide was, at least in part, due to inhibition of circulating immune cell recruitment toward inflammatory stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fisher, G. J., Talwar, H. S., Lin, J., and Voorhees, J. J. (1999), Photochem. Photobiol. 69, 154–157.

    Article  CAS  Google Scholar 

  2. Chung, J. H., Kang, S., Varani, J., Lin, J., Fisher, G. J., and Voorhees, J. J. (2000), J. Invest. Dermatol. 115, 177–182.

    Article  CAS  Google Scholar 

  3. Gilchrest, B. A. and Bohr, V. A. (1997), FASEB J. 11, 322–330.

    CAS  Google Scholar 

  4. Varani, J., Spearman, D., Perone, P., Fligiel, S. E., Datta, S. C., Wang, Z. Q., Shao, Y., Kang, S., Fisher, G. J., and Voorhees, J. J. (2001), Am. J. Pathol. 158, 931–942.

    CAS  Google Scholar 

  5. Voorhees, J. J. (2000), Clin. Exp. Dermatol. 25, 161, 162.

    Article  Google Scholar 

  6. Jochan, T., Matsui, M., Anderson, J., and Shalita, A. (1995), J. Invest. Dermatol. 104, 684.

    Google Scholar 

  7. Marks, J. G. and DeLeo, V. A. (1997), Contact and Occupational Dermatology, 2nd ed., Mosby, New York, chapter 5, pp. 63–64.

    Google Scholar 

  8. Ramus, H. (1972), J. Phycol. 8, 97–111.

    Article  CAS  Google Scholar 

  9. Arad, (Malis) S. (2000), in Polysaccharides of Red Microalgae: Chemicals from Microalgae, Cohen, Z., ed., Taylor & Francis, New York, NY, pp. 282–287.

    Google Scholar 

  10. Geresh, S. and Arad, (Malis) S. (1991), Bioresour. Technol. 38, 195–201.

    Article  CAS  Google Scholar 

  11. Cohen, E. and Arad, (Malis) S. (1989), Biomass 18, 59–67.

    Article  Google Scholar 

  12. Arad, (Malis) S. (1988), in Algal Biotechnology, Stadler, T., Mollion, J., Verdus, M. C., Karamanos, Y., Morvan, H., and Christiaen, D., eds., Elsevier Applied Science, London, pp. 65–87.

    Google Scholar 

  13. Frevert, C. W., Wong, V. A., Goodman, R. B., Goodwin, R., and Martin, T. R. (1998), J. Immunol. Methods 213, 41–52.

    Article  CAS  Google Scholar 

  14. Choi, T.-S., Soloman, B., Nowakowski, M., Lee, W.-L., Geen, S., Suntharalingam, K., Fikrig, S., and Shalita, A. (1996), Skin Pharmacol. 9, 190–196.

    Article  CAS  Google Scholar 

  15. Bernadi, L. and Berardesca, E. (1995), in Bioengineering of the Skin, Berardesca, E., Elsner, P., Wilhelm, K. P., and Maibach, H. I., eds., CRC Press, New York, pp. 13–28.

    Google Scholar 

  16. Muizzuddin, N., Marenus, M. D., and Maes, D. (1990), J. Soc. Cosmet. Chem. 41, 269–278.

    Google Scholar 

  17. Katiyar, S. K., Matsui, M. S., Elmets, C. A., and Mukhtar, H. (1999), Photochem. Photobiol. 69, 148–152.

    Article  CAS  Google Scholar 

  18. Elmets, C. A., Singh, D., Tubesing, K., Matsui, M., Katiyar, S., and Mukhtar, H. (2001), J. Am. Acad. Dermatol. 44, 425–432.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary S. Matsui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsui, M.S., Muizzuddin, N., Arad, S. et al. Sulfated polysaccharides from red microalgae have antiinflammatory properties in vitro and in vivo. Appl Biochem Biotechnol 104, 13–22 (2003). https://doi.org/10.1385/ABAB:104:1:13

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:104:1:13

Index Entries

Navigation