Skip to main content
Log in

Limits for alkaline detoxification of dilute-acid lignocellulose hydrolysates

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In addition to fermentable sugars, dilute-acid hydrolysates of lignocellulose contain compounds that inhibit fermenting microorganisms, such as Saccharomyces cerevisiae. Previous results show that phenolic compounds and furan aldehydes, and to some extent aliphatic acids, act as inhibitors during fermentation of dilute-acid hydrolysates of spruce. Treatment of lignocellulose hydrolysates with alkali, usually in the form of overliming to pH 10.0, has been frequently employed as a detoxification method to improve fermentability. A spruce dilute-acid hydrolysate was treated with NaOH in a factorial design experiment, in which the pH was varied between 9.0 and 12.0, the temperature between 5 and 80°C, and the time between 1 and 7 h. Already at pH 9.0, >25% of the glucose was lost when the hydrolysate was treated at 80°C for 1 h. Among the monosaccharides, xylose was degraded faster under alkaline conditions than the hexoses (glucose, mannose, and galactose), which, in turn, were degraded faster than arabinose. The results suggest that alkali treatment of hydrolysates can be performed at temperatures below 30°C at any pH between 9.0 and 12.0 without problems with sugar degradation or formation of inhibiting aliphatic acids. Treatment with Ca(OH)2 instead of NaOH resulted in more substantial degradation of sugars. Under the harsher conditions of the factorial design experiment, the concentrations of furfural and 5-hydroxymethylfurfural decreased while the total phenolic content increased. The latter phenomenon was tentatively attributed to fragmentation of soluble aromatic oligomers in the hydrolysate. Separate phenolic compounds were affected in different ways by the alkaline conditions with some compounds showing an increase in concentration while others decreased. In conclusion, the conditions used for detoxification with alkali should be carefully controlled to optimize the positive effects and minimize the degradation of fermentable sugars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wheals, A. E., Basso, L. C., Alves, D. M. G., and Amorim, H. V. (1999), Trends Biotechnol. 17, 482–487.

    Article  CAS  Google Scholar 

  2. Ando, S., Arai, I., Kiyoto, K., and Hanai, S. (1986), J. Ferment. Technol. 64, 567–570.

    Article  CAS  Google Scholar 

  3. Clark, T. A. and Mackie, K. L. (1984), J. Chem. Technol. Biotechnol. 34B, 101–110.

    CAS  Google Scholar 

  4. Larsson, S., Palmqvist, E., Hahn-Hägerdal, B., Tengborg, C., Stenberg, K., Zacchi, G., and Nilvebrant, N.-O. (1999), Enzyme Microb. Technol. 24, 151–159.

    Article  CAS  Google Scholar 

  5. Larsson, S., Reimann, A., Nilvebrant, N.-O., and Jönsson, L. J. (1999), Appl. Biochem. Biotechnol. 77–79, 91–103.

    Article  Google Scholar 

  6. Larsson, S., Quintana-Sainz, A., Reimann, A., Nilvebrant, N.-O., and Jönsson, L. J. (2000), Appl. Biochem. Biotechnol. 84–86, 617–632.

    Article  Google Scholar 

  7. Martinez, A., Rodriguez, M. E., York, S. W., Preston, J. F., and Ingram, L. O. (2000), Biotechnol. Bioeng. 69, 526–536.

    Article  CAS  Google Scholar 

  8. Martinez, A., Rodriguez, M. E., Wells, M. L., York, S. W., Preston, J. F., and Ingram, L. O. (2001), Biotechnol. Prog. 17, 287–293.

    Article  CAS  Google Scholar 

  9. Nilvebrant, N.-O., Reimann, A., Larsson, S., and Jönsson, L. J. (2001), Appl. Biochem. Biotechnol. 91–93, 35–49.

    Article  Google Scholar 

  10. Ranatunga, T. D., Jervis, J., Helm, R. F., McMillan, J. D., and Wooley, R. J. (2000), Enzyme Microb. Technol. 27, 240–247.

    Article  CAS  Google Scholar 

  11. Ranatunga, T. D., Jervis, J., Helm, R. F., McMillan, J. D., and Hatzis, C. (1997), Biotechnol. Lett. 19, 1125–1127.

    Article  CAS  Google Scholar 

  12. Persson, P., Andersson, J., Gorton, L., Larsson, S., Nilvebrant, N.-O., and Jönsson, L. J. (2002), J. Agric. Food Chem. 50(19), 5318–5325.

    Article  CAS  Google Scholar 

  13. Pigman, W. and Anet, E. F. L. J. (1972), in The Carbohydrates, vol. 1A, Pigman, W. and Horton, D., eds., Academic Press, New York, NY, pp. 165–194.

    Google Scholar 

  14. De Bruijn, J. M., Kieboom, A. P. G., and Van Bekkum, H. (1986), Recl. Trav. Chim. Pays-Bas 105, 176–183.

    Google Scholar 

  15. De Bruijn, J. M., Kieboom, A. P. G., and Van Bekkum, H. (1987), Recl. Trav. Chim. Pays-Bas 106, 35–43.

    Google Scholar 

  16. De Bruijn, J. M., Kieboom, A. P. G., and Van Bekkum, H. (1987), Starch/Staerke 39, 23–28.

    Article  Google Scholar 

  17. Forsskåhl, I., Popoff, T., and Theander, O. (1976), Carbohydr. Res. 48, 13–21.

    Article  Google Scholar 

  18. Yang, B. Y. and Montgomery, R. (1996), Carbohydr. Res. 280, 27–45.

    Article  CAS  Google Scholar 

  19. Yang, B. Y. and Montgomery, R. (1996), Carbohydr. Res. 280, 47–57.

    Article  CAS  Google Scholar 

  20. De Bruijn, J. M., Kieboom, A. P. G., and Van Bekkum, H. (1986), Sugar Technol. Rev. 13, 21–52.

    Google Scholar 

  21. Martinez, A., Rodriguez, M. E., York, S. W., Preston, J. F., and Ingram, L. O. (2000), Biotechnol. Prog. 16, 637–641.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils-Olof Nilvebrant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nilvebrant, NO., Persson, P., Reimann, A. et al. Limits for alkaline detoxification of dilute-acid lignocellulose hydrolysates. Appl Biochem Biotechnol 107, 615–628 (2003). https://doi.org/10.1385/ABAB:107:1-3:615

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:107:1-3:615

Index Entries

Navigation