Skip to main content
Log in

Discrimination among eight modified michaelis-menten kinetics models of cellulose hydrolysis with a large range of substrate/enzyme ratios

Inhibition by cellobiose

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The kinetics of exoglucanase (Cel7A) from Trichoderma reesei was investigated in the presence of cellobiose and 24 different enzyme/Avicel ratios for 47 h, in order to establish which of the eight available kinetic models best explained the factors involved. The heterogeneous catalysis was studied and the kinetic parameters were estimated employing integrated forms of Michaelis-Menten equations through the use of nonlinear least squares. It was found that cellulose hydrolysis follows a model that takes into account competitive inhibition by cellobiose (final product) with the following parameters: K m=3.8 mM, K ic=0.041 mM, k cat=2 h−1 (5.6×10−4 s−1). Other models, such as mixed type inhibition and those incorporating improvements concerning inhibition by substrate and parabolic inhibition, increased the modulation performance very slightly. The results support the hypothesis that nonproductive enzyme substrate complexes, parabolic inhibition, and enzyme inactivation (Selwyn test) are not the principal constraints in enzymatic cellulose hydrolysis. Under our conditions, the increment in hydrolysis was not significant for substrate/enzyme ratios <6.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

E :

free enzyme

EI :

enzyme inhibitor complex

EII :

enzyme inhibitor complex for second inhibitor molecule

EIS :

enzyme substrate inhibitor complex

ES :

enzyme substrate complex (nonproductive)

Et :

total enzyme

f 0.95 :

point of Fp ApB (F distribution) curve with area 0.95 (to its left)

k cat :

catalytic constant (h−1)

K ic :

competitive inhibition constant (mM)

K ip :

parabolic inhibition constant (mM)

K is :

substrate inhibition constant (mM)

K iu :

uncompetitive inhibition constant (mM)

K m :

Michaelis constant (mM)

n :

experimental points

p A′ pB :

parameters

P :

product (µg/mL) (cellobiose)

P 0 :

initial product

P t :

product at time t (min)

R 2 :

determination coefficient

S :

substrate (%) (cellulose)

SSE :

sum of squares error

t :

time (min)

V max :

maximum velocity

w :

quotient used to test significance of improvement of different models that are interconvertible by addition or elimination of parameters in comparison with F value

References

  1. Ladisch, M. R. and Svarczkopf, J. A. (1991), Bioresour. Technol. 36, 83–95.

    Article  CAS  Google Scholar 

  2. Kurakake, M., Shirasawa, T., Ooshima, H., Converse, A. O., and Kato, J. (1995), Appl. Biochem. Biotechnol. 50, 231–241.

    CAS  Google Scholar 

  3. Howell, J. A. and Mangat, M. (1978), Biotechnol. Bioeng. 20, 847–863.

    Article  CAS  Google Scholar 

  4. Nidetzky, B., Steiner, W., Hayn, M., and Esterbauer, H. (1993), Bioresour. Technol. 44, 25–32.

    Article  CAS  Google Scholar 

  5. Lee, Y.-H. and Fan, L. T. (1982), Biotechnol. Bioeng. 24, 2383–2406.

    Article  CAS  Google Scholar 

  6. Pereira, A. N. (1987), PhD thesis, Purdue University, West Lafayette, IN.

    Google Scholar 

  7. Kim, D. W., Kim, T. S., Jeong, Y. K., and Lee, J. K. (1992), J. Ferment. Bioeng. 73(6), 461–466.

    Article  CAS  Google Scholar 

  8. Nidetzky, B., Hayn, M., Macarron, R., and Steiner, W. (1993), Biotechnol. Lett. 15(1), 71–76.

    Article  CAS  Google Scholar 

  9. Eriksson, T., Karlsson, J., and Tjerneld, F. A. (2002), Appl. Biochem. Biotechnol. 101, 41–60.

    Article  CAS  Google Scholar 

  10. Howell, J. A. and Stuck, J. D. (1975), Biotechnol. Bioeng. 17, 873–893.

    Article  CAS  Google Scholar 

  11. Bader, J., Bellgardt, K.-H., Singh, A., Kumar, P. K. R., and Schügerl, K. (1992), Bioprocess Eng. 7, 235–240.

    Article  CAS  Google Scholar 

  12. Maglione, G., Russel, J. B., and Wilson, D. B. (1997), Appl. Environ. Microbiol. 63(2), 665–669.

    CAS  Google Scholar 

  13. Schülein, M. J. (1997), Biotechnology 57(1–3), 71–81.

    Google Scholar 

  14. Bezerra, R. M. (1995), PhD thesis, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal.

    Google Scholar 

  15. Hsu, T.-A. (1979), PhD thesis, Purdue University, West Lafayette, IN.

    Google Scholar 

  16. Lee, Y.-H. and Fan, L. T. (1983), Biotechnol. Bioeng. 25, 939–966.

    Article  CAS  Google Scholar 

  17. Beldman, G., Leeuwen, S.-V., Rombouts, F. M., and Voragen, F. G. J. (1985), Biochem. J. 146, 301–308.

    CAS  Google Scholar 

  18. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951), J. Biol. Chem. 193, 265–275.

    CAS  Google Scholar 

  19. Wood, T. M. and Bhat, K. M. (1988), Methods Enzymol. 160, 87–113.

    CAS  Google Scholar 

  20. Klyosov, A. A. and Rabinovitch, M. L. (1980), in Enzyme Engineering Future Directions, Wingard, L. B. Jr., Berezine, I. V., and Klyosov, A. A., eds., Plenum, New York, pp. 83–165.

    Google Scholar 

  21. Nidetzky, B., Steiner, W., and Claeyssens, M. (1994), Biochem. J. 303, 817–823.

    CAS  Google Scholar 

  22. Väljamäe, P., Petterson, G., and Johansson, G. (2001), Eur. J. Biochem. 268, 4520–4526.

    Article  Google Scholar 

  23. Harjunpää, V., Teleman, A., Koivula, A., Ruohonen, L., Teeri, T. T., Teleman, O., and Drakenberg, T. (1998), Eur. J. Biochem. 240, 584–591.

    Article  Google Scholar 

  24. Segel, H. I. (1993), in Enzyme Kinetics, John Wiley & Sons, New York, pp. 18–89.

    Google Scholar 

  25. Fujii, M., Homma, T., Ooshima, K., and Taniguchi, M. (1991), Appl. Biochem. Biotechnol. 28/29, 145–156.

    Article  Google Scholar 

  26. Fernly, H. N. (1974), Eur. Biochem. J. 43, 377, 378.

    Article  Google Scholar 

  27. Yun, S.-L. and Suelter, C. H. (1977), Biochim. Biophys. Acta 480, 1–13.

    CAS  Google Scholar 

  28. Mangat, M. N. and Howell, J. A. (1978), Food Pharm. Bioeng. 74(172), 77–81.

    CAS  Google Scholar 

  29. Ladisch, M. R., Lin, K. W., Voloch, M., and Tsao, G. T. (1983), Enzyme Microb. Technol. 5(2), 81–102.

    Article  Google Scholar 

  30. Ghose, T. K., Roychoudhury, P. K., and Ghosh, P. (1984), Biotechnol. Bioeng. 26, 377–381.

    Article  CAS  Google Scholar 

  31. Golovchenko, N. P., Kataeva, I. A., and Akimenko, V. K. (1992), Enzyme Microb. Technol. 14, 327–331.

    Article  CAS  Google Scholar 

  32. Orgeret, C., Seillier, E., Gautier, C., Defaye, J., and Driguez, H. (1992), Carbohydr. Res. 224, 29–40.

    Article  CAS  Google Scholar 

  33. Lee, Y.-H. and Fan, L. T. (1983), Biotechnol. Bioeng. 25, 939–966.

    Article  CAS  Google Scholar 

  34. Holtzapple, M., Cognata, M., Shu, Y., and Hendrickson, C. (1990), Biotechnol. Bioeng. 36, 275–287.

    Article  CAS  Google Scholar 

  35. Duggleby, R. G. (1995), Methods Enzymol. 249, 61–90.

    CAS  Google Scholar 

  36. Selwyn, M. J. (1965), Biochim. Biophys. Acta 105, 193–195.

    CAS  Google Scholar 

  37. Ralston, M. L. and Jennrich, R. I. (1978), Technometrics 20(1), 7–14.

    Article  Google Scholar 

  38. Mannervik, B. (1982), Methods Enzymol. 87C, 370–391.

    Google Scholar 

  39. Igarashi, K., Samejima, M., and Eriksson K.-E. L. (1998), Eur. J. Biochem. 253, 101–106.

    Article  CAS  Google Scholar 

  40. Henriksson, H., Ståhlberg, J., Isaksson, R., and Pettersson, G. (1996), FEBS Lett. 390, 339–344.

    Article  CAS  Google Scholar 

  41. Ladisch, M. R., Hong, J., Voloch, M., and Tsao, G. T. (1981), in Trends in the Biology of Fermentations for Fuels and Chemicals, Hollaender, A., Rabson, R., Pietro, R., and Wolfe, eds., Plenum, New York, pp. 55–83.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui M. F. Bezerra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bezerra, R.M.F., Dias, A.A. Discrimination among eight modified michaelis-menten kinetics models of cellulose hydrolysis with a large range of substrate/enzyme ratios. Appl Biochem Biotechnol 112, 173–184 (2004). https://doi.org/10.1385/ABAB:112:3:173

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:112:3:173

Index Entries

Navigation