Skip to main content
Log in

Updates on softwood-to-ethanol process development

  • Session 1A Feedstock Supply and Logistics
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Softwoods are generally considered to be one of the most difficult lignocellulosic feedstocks to hydrolyze to sugars for fermentation, primarily owing to the nature and amount of lignin. If the inhibitory effect of lignin can be significantly reduced, softwoods may become a more useful feedstock for the bioconversion processes. Moreover, strategies developed to reduce problems with softwood lignin may also provide a means to enhance the processing of other lignocellulosic substrates. The Forest Products Biotechnology Group at the University of British Columbia has been developing softwood-to-ethanol processes with SO2-catalyzed steam explosion and ethanol organosolv pretreatments. Lignin from the steam explosion process has relatively low reactivity and, consequently, low product value, compared with the highvalue coproduct that can be obtained through organosolv. The technical and economic challenges of both processes are presented, together with suggestions for future process development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bowyer, J. L. and Stockmann, V. E. (2001), Forest Prod. J. 51(1), 10–21.

    Google Scholar 

  2. CCFM (2003) Table 5.3—Net Merchantable Volume of Roundwood Harvested by Ownership, Category, Species Group and Province/Territory, 1990–2002, Compendium of Canadian Forestry Statistics, Canadian Council of Forest Ministers, Ottawa, Ontario, http://nfdp.ccfm.org/default.htm.

    Google Scholar 

  3. FAO (2002) FAOStat Agriculture Data, Food and Agriculture Organization of the United Nations, Rome, Italy, http://apps.fao.org/page/collections?subset=agriculture

    Google Scholar 

  4. FAO (2002) FAO Stat Forestry Data, Food and Agriculture Organization of the United Nationas, Rome, Italy, http://apps.fao.org/page/collections?subset=forestry.

    Google Scholar 

  5. Mabee, W. E., Gregg, D. J., and Saddler, J. N. (2003), Ethanol from Lignocellulosics: Views to Implementation, Report to IEA Bioenergy Task 39, Vancouver, Canada.

  6. NRCan (2003) The State of Canada's Forests 2002–2003, Natural Resources Canada, Ottawa, Ontario, p. 18.

    Google Scholar 

  7. Panshin, A. J. and de Zeeuw, C. (1980), Textbook of Wood Technology, 4th ed., McGraw-Hill, Toronto, Ontario, p. 213.

    Google Scholar 

  8. Statistics Canada (2003), CANSIM II, Table 051-0001: Estimates of Population, by Age Group and Sex, Canada, Provinces and Territories, Annual, Statistics Canada, Ottawa, Ontario, http://cansim2.statcan.ca.

    Google Scholar 

  9. Statistics Canada (2003), Census of Agriculture, Statistics Canada, Ottawa, Ontario, http://www.statcan.ca/english/Pgdb/census.htm

    Google Scholar 

  10. Sjöström, E. (1993), Wood Chemistry, Academic Press, San Diego.

    Google Scholar 

  11. Shimada, K., Hosoya, S., and Ikeda, T. (1997), J. Wood Chem. Technol. 17, 57–72.

    CAS  Google Scholar 

  12. Avellar, B. K. and Glasser, W. G. (1998), Biomass Bioenerg. 14, 205–218.

    Article  CAS  Google Scholar 

  13. Boussaid, A. L., Esteghlalian, A. R., Gregg, D. J., Lee, K. H., and Saddler, J. N. (2000), Appl. Biochem. Biotechnol. 84–86, 693–705.

    Article  PubMed  Google Scholar 

  14. Brownell, H. H., Yu, E. K. C., and Saddler, J. N. (1986), Biotechnol. Bioeng. 28, 792–801.

    Article  CAS  Google Scholar 

  15. Carrasco, J. E., Saiz, M. C., Navarro, A., Soriano, P., Saez, F., and Martinez, J. M. (1994), Appl. Biochem. Biotechnol. 45–46, 23–34.

    Article  Google Scholar 

  16. Nguyen, Q. A., Tucker, M. P., Boynton, B. L., Keller, F. A., and Schell, D. J. (1998), Appl. Biochem. Biotechnol. 70–72, 77–87.

    Google Scholar 

  17. Nguyen Q. A., Tucker, M. P., Keller, F. A., Beaty, D. A., Connors, K. M., and Eddy, F. P. (1999), Appl. Biochem. Biotechnol. 77, 133–142.

    Article  Google Scholar 

  18. Boussaid, A., Jarvis, J., Gregg, D. J., and Saddler, J. N. (1997), In: The Third Biomass Conference of the Americas, Overend, R. P.m and Chornet, E. (eds.), Montreal, Canada, pp. 873–880.

  19. Donaldson, L. A., Wong, K. K. Y., and Mackie, K. L. (1988), Wood Sci. Technol. 22, 103–114.

    Article  CAS  Google Scholar 

  20. Yang, B., Boussaid, A., Mansfield, S. D., Gregg, D. J., and Saddler, J. N. (2002), Biotechnol. Bioeng. 77, 678–684.

    Article  PubMed  CAS  Google Scholar 

  21. Bura, R. (2004), PhD Thesis, University of British Columbia, Vancouver, Canada.

  22. Pye, E. K., Klein, W. R., Lora, J. H., and Cronlund, M. (1987), The Alcell TM Process. Solvent Pulping—Promises & Problems Conference, Appleton, WI, pp. 55–67.

  23. Bose, S. K. and Francis, R. C. (1999), J. Pulp Paper Sci. 25, 425–430.

    CAS  Google Scholar 

  24. Meshgini, M. and Sarkanen, K. V. (1989), Holzforschung 43, 239.

    Article  CAS  Google Scholar 

  25. Evtiguin, D. V., Neto, C. P., and Silvestre, A. J. D. (1997), J. Wood Chem. Technol. 17, 41–55.

    Google Scholar 

  26. Lora, J. H., Wu, C. F., Pye, E. K., and Balatinecz, J. J. (1989), In: Lignin: Properties and Materials. American Chemical Society Symposium Series, 397, 312–323.

  27. Mullinder, J. (1989), Pulp Paper J. 42(7), 31.

    Google Scholar 

  28. Fales, G. (1988), Paper Age 104(10) 40.

    Google Scholar 

  29. Karl, W. (1988), Pulp Paper J. 41(7), 17, 21.

    Google Scholar 

  30. Anonymous (1998), PIMAs North American Papermaker 6, 18.

    Google Scholar 

  31. Mirochnik, O. (2004), MASc Thesis, University of British Columbia, Vancouver, Canada.

  32. Galbe M. and Zacchi, G. (2002), Appl. Microbiol. Biotechnol. 59, 618–628.

    Article  PubMed  CAS  Google Scholar 

  33. Robinson, J., Keating, J. D., Mansfield, S. D., and Saddler, J. N. (2003), Enzyme Microb. Technol. 33, 757–765.

    Article  CAS  Google Scholar 

  34. Gregg, D. J. and Saddler, J. N. (1997), Appl. Biochem. Biotechnol. 63–65, 609–623.

    Article  Google Scholar 

  35. Perry, P. H. and Green, D. (1984), Perry's Chemical Engineers' Handbook, 6th ed., McGraw-Hill, New York.

    Google Scholar 

  36. Ulrich, G. D. (1984), A Guide to Chemical Engineering Process Design and Economics, Wiley and Sons, New York.

    Google Scholar 

  37. Pan, X., Arato, C., Gilkes, N., et al. (2005), Biotechnol. Bioeng. 90(4), 473–481.

    Article  PubMed  CAS  Google Scholar 

  38. Kurabi, A., Berlin, A., Gilkes, N., et al. (2004), Appl. Biochem. Biotechnol. 121–124, 219–230.

    Google Scholar 

  39. Berlin, A., Gilkes, N., Kurabi, A., et al. (2004), Appl. Biochem. Biotechnol. 121–124, 163–170.

    Google Scholar 

  40. Wingren, A., Soderstrom, J., Galbe, M., and Zacchi, G. (2004), Biotechnol. Prog. 20, 1421–1429.

    Article  PubMed  CAS  Google Scholar 

  41. Aden, A., Ruth, M., Ibsen K., et al. (2002), Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover, National Renewable Energy Lab, Golden, CO, NREL Report No. TP-510-32438.

    Google Scholar 

  42. Gregg, D. J., Boussaid, A., and Saddler, J. N. (1998), Bioresour. Technol. 63, 7–12.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warren E. Mabee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mabee, W.E., Gregg, D.J., Arato, C. et al. Updates on softwood-to-ethanol process development. Appl Biochem Biotechnol 129, 55–70 (2006). https://doi.org/10.1385/ABAB:129:1:55

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:129:1:55

Index Entries

Navigation