Skip to main content
Log in

Metabolic engineering of Saccharomyces cerevisiae for efficient production of pure l−(+)−lactic acid

  • Session 5 Microbial Catalysis and Metabolic Engineering
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

We developed a metabolically engineered Saccharomyces cerevisiae, which produces optically pure l-lactic acid efficiently using cane juice-based medium. In this recombinant, the coding region of pyruvate decarboxylase (PDC)1 was completely deleted, and six copies of the bovine l-lactate dehydrogenase (l-LDH) genes were introduced on the genome under the control of the PDC1 promoter. To confirm optically pure lactate production in lowcost medium, cane juice-based medium was used in fermentation with neutralizing conditions. l-lactate production reached 122 g/L, with 61% of sugar being transformed into l-lactate finally. The optical purity of this l-lactate, that affects the physical characteristics of poly-l-lactic acid, was extremely high, 99.9% or over.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ozeki, E. (1996), Shimadzu Rev. 53, 1–8.

    Google Scholar 

  2. Ohara, H. (1998), Nippon Kagaku Kaishi 6, 323–331.

    Google Scholar 

  3. Hofvendahl, K. and Hahn-Hagerdal B. (2000), Enzyme Microb. Technol. 26, 87–107.

    Article  CAS  Google Scholar 

  4. Benthin, S. (1995), Appl. Microbiol. Biotechnol. 42, 826–829.

    Article  CAS  Google Scholar 

  5. van Breugel, J., Van Krieken, J., Cerda Baro, A. Vidal Lancis, J. M., and Camprubi Vila, M. (2002), US Patent No. 6,630,603.

  6. Hiyama, T., Fukui, S., and Kitahara, K. (1968), J. Biochem. 64, 100–107.

    Google Scholar 

  7. Malleret, C., Lauret, R., Ehrlich, S. D., Morel-Deville, F., and Zagorec, M. (1998). Microbiology 144, 3327–3333.

    CAS  Google Scholar 

  8. Lapierre, L., Germond, J. E., Ott, A., Delley, M., and Mollet, B. (1999), Appl. Environ. Microbiol 65, 4002–4007.

    CAS  Google Scholar 

  9. Kyla-Nikkila, K., Hujanen, M., Leisola, M., and Palva, A. (2000), Appl. Environ. Microbiol. 66, 3835–3841.

    Article  CAS  Google Scholar 

  10. Dequin, S. and Barre, P. (1994), Bio/Technology 12, 173–177.

    Article  CAS  Google Scholar 

  11. Porro, D., Barmbilla, L., Ranzi, B. M., Martegani, E., and Alberghina, L. (1995) Biotechnol. Prog. 11, 294–298.

    Article  CAS  Google Scholar 

  12. Adachi, E., Torigoe, M., Sugiyama, S., Nikawa, J., and Shimizu, K. (1998), J. Ferment. Bioeng. 86, 284–289.

    Article  CAS  Google Scholar 

  13. Skory, C. D. (2003), J. Ind. Microbiol. Biotehnol. 67, 22–27.

    Google Scholar 

  14. Ishida, N., Saitoh, S., Tokuhiro, K., et al. (2005), Appl. Environ. Microbiol. 71, 1964–1970.

    Article  CAS  Google Scholar 

  15. Fontana, J. D., Guimaraes, M.F., Martins, N. T., Fontana, C. A., and Baron, M. (1996), Appl. Biochem. Biotechnol. 58, 413–422.

    Article  Google Scholar 

  16. Narita, J., Nakahara, S., Fukuda, H., and Kondo, A. (2004), J. Biosci. Bioeng. 97, 423–425

    CAS  Google Scholar 

  17. Ohara, H., Doi, U., Otsuka, H., Okuyama, H., and Okada, S. (2001), Nippon Seibutukougaku Kaishi 79, 142–148.

    CAS  Google Scholar 

  18. Hipolto, C. N., Matsunaka, T., Kobayashi, G., Sonomoto, K., and Ishizaki, A. (2002), J. Biosci. Bioeng. 93, 281–287.

    Article  Google Scholar 

  19. Miura, S., Arimura, T., Itoda, N., et al. (2004), J. Biosci. Bioeng. 97, 153–157.

    CAS  Google Scholar 

  20. Sambrook, J., Fritsh, E. F., and Maniatis, T. (1989), Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, NY.

    Google Scholar 

  21. Saitoh, S., Mieno, Y., Nagashima, T., Kumagai, C., and Kitamoto, K. (1996), J. Ferment. Bioeng. 81, 98–103.

    Article  Google Scholar 

  22. Gatignol, A., Baron, M., and Tiraby, G. (1987), Mol. Gen. Genet. 207, 342–348.

    Article  CAS  Google Scholar 

  23. Hadfild, C., Jordan, B. E., Mount, R. C., Pretorius, G. H. J., and Burak, E. (1990), Curr. Genet. 18, 303–313.

    Article  Google Scholar 

  24. Ito, H., Fukuda, Y., Murata, K., and Kimura, H. (1983), J. Bacteriol. 153, 163–168.

    CAS  Google Scholar 

  25. Pronk, T. J., De Steensma, H. Y., and van Dijiken, J. P. (1996), Yeast 12, 1607–1633.

    Article  CAS  Google Scholar 

  26. Minowa, T., Iwata, S., Sakai, H., and Ohata, T. (1989), Gene 85, 161–168.

    Article  CAS  Google Scholar 

  27. Kellermann, E. and Hollenberg, C. P. (1988), Curr. Genet. 14, 337–344.

    Article  CAS  Google Scholar 

  28. Butler, G. and Mc Connell, D. J. (1988), Curr. Gent. 14, 405–412.

    Article  CAS  Google Scholar 

  29. van Maris, A. J. A., Winkler, A. A., Porro, D., van Dijken J. P., and Pronk, J. T. (2004), Appl. Environ. Microbiol. 70, 2898–2905.

    Article  CAS  Google Scholar 

  30. Skory, C.D. (2004), Appl. Microbiol. Biotechnol. 64, 237–242.

    Article  CAS  Google Scholar 

  31. Chang, D. E., Shin, S., Rhee, J., and Pan, J. (1999), Appl. Environ. Microbiol. 65, 1384–1389.

    CAS  Google Scholar 

  32. Dien, B. S., Nichols, N. N., and Bothast, R. J. (2001), J. Ind. Microbiol. Biotechnol. 27, 259–264.

    Article  CAS  Google Scholar 

  33. Zhou, S., Causey, T. B., Hasona, A., Shanmugam K. T., and Ingram, L. O. (2003), Appl. Environ. Microbiol. 69, 399–407.

    Article  CAS  Google Scholar 

  34. Zhou, S., Shanmugam, K. T., and Ingram, L. O. (2003), Appl. Environ. Microbiol. 69, 2237–2244.

    Article  CAS  Google Scholar 

  35. Yumoto, I. and Ikeda, K. (1995), Biotechnol. Lett. 17, 543–546.

    Article  CAS  Google Scholar 

  36. Hofvendahl, K. and Hahn-Hagerdal, B. (1997), Enzyme Microb. Technol. 20, 301–307.

    Article  CAS  Google Scholar 

  37. Olmos-Dichara, A., Ampe, F., Uribelarrea, J. L., Pareilleux, A., and Goma, G. (1997), Biotechnol. Lett. 19, 709–714.

    Article  CAS  Google Scholar 

  38. Siebold, M., von Frieling, P., Joppien, R., Rindfleisch, D., Schugerl K., and Roper, H. (1995), Process Biochem. 30, 81–95.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuhiro Ishida.

Additional information

These two authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishida, N., Saitoh, S., Ohnishi, T. et al. Metabolic engineering of Saccharomyces cerevisiae for efficient production of pure l−(+)−lactic acid. Appl Biochem Biotechnol 131, 795–807 (2006). https://doi.org/10.1385/ABAB:131:1:795

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:131:1:795

Index Entries

Navigation