Skip to main content
Log in

Optimization and modeling of laccase production by Trametes versicolor in a bioreactor using statistical experimental design

  • Original Research Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Experimental design and response surface methodologies were applied to optimize laccase production by Trametes versicolor in a bioreactor. The effects of three factors, initial glucose concentration (0 and 9 g/L), agitation (100 and 180 rpm), and pH (3.0 and 5.0), were evaluated to identify the significant effects and its interactions in the laccase production. The pH of the medium was found to be the most important factor, followed by initial glucose concentration and the interaction of both factors. Agitation did not seem to play an important role in laccase production, nor did the interaction agitation x medium pH and agitation x initial glucose concentration. Response surface analysis showed that an initial glucose concentration of 11 g/L and pH controlled at 5.2 were the optimal conditions for laccase production by T. versicolor. Under these conditions, the predicted value for laccase activity was >10,000 U/L, which is in good agreement with the laccase activity obtained experimentally (11,403 U/L). In addition, a mathematical model for the bioprocess was developed. It is shown that it provides a good description of the experimental profile observed, and that it is capable of predicting biomass growth based on secondary process variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moreira, M.T., Feijoo, G., Sierra-Alvarez, R., and Field, J.A. (1999), Bioresour. Technol. 70, 255–260.

    Article  CAS  Google Scholar 

  2. Tanaka, H., Itakura, S., and Enoki, A. (1999), J. Biotechnol. 75, 57–70.

    Article  CAS  Google Scholar 

  3. Archibald, F.S., Bourbonnais, R., Jurasek, L., Paice, M.G., and Reid, I.D. (1997), J. Biotechnol. 53, 215–236.

    Article  CAS  Google Scholar 

  4. Castro, A.I.R.P., Evtuguin, D.V., and Xavier, A.M.B. (2003), J. Mol. Catal. B Enzymat. 22, 13–20.

    Article  CAS  Google Scholar 

  5. Mayer, A.M., and Staples, R.C. (2002), Phytochemistry 60, 551–565.

    Article  CAS  Google Scholar 

  6. Thurston, C.F. (1994), Microbiology 140, 19–26.

    Article  CAS  Google Scholar 

  7. Eggert, C., Temp, U., Dean, J.F.D., and Eriksson, K.E.L. (1996), FEBS Lett. 391, 144–148.

    Article  CAS  Google Scholar 

  8. Keum, Y.S., and Li, Q.X. (2004), Chemosphere 56, 23–30.

    Article  CAS  Google Scholar 

  9. Walter, M., Boul, L., Chong, R., and Ford, C. (2004), J. Environ. Manage. 71, 361–369.

    Article  CAS  Google Scholar 

  10. Servili, M., DeStefano, G., Piacquadio, P., and Sciancalepore, V. (2000), Am. J. Enol. Vitic. 51, 357–361.

    CAS  Google Scholar 

  11. Blánquez, P., Casas, N., Font, X., et al. (2004), Water Res. 38, 2166–2172.

    Article  CAS  Google Scholar 

  12. Amaral, P.F.F., Fernandes, D.L.A., Tavares, A.P.M., et al. (2004), Environ. Technol. 25, 1313–1320.

    Article  CAS  Google Scholar 

  13. Zamora, P.P., Pereira, C.M., Tiburtius, E.R.L., et al. (2003), Appl. Catal. 42, 131–144.

    Article  CAS  Google Scholar 

  14. Keharia, H. and Madamwar, D. (2002), Appl. Biochem. Biotechnol. 102–103, 99–108.

    Article  Google Scholar 

  15. Tavares, A.P.M., Coelho, M.A.Z., Coutinho, J.A.P., and Xavier, A.M.R.B. (2005), J. Chem. Technol. Biot. 80, 669–676.

    Article  CAS  Google Scholar 

  16. Box, G.E.P., Hunter, W.G., and Hunter, J.S. (1978), in Statistics for Experiments: An introduction to Design, Data Analysis, and Model Building, John Wiley & Sons, New York, pp. 306–317.

    Google Scholar 

  17. Nawani, N.N. and Kapadnis, B.P. (2005), Process Biochem. 40, 651–660.

    Article  CAS  Google Scholar 

  18. Vranešić, D., Kurtanjek, E., Santos, A.M.P., and Maugeri, F. (2002), Food Technol. Biotechnol. 40, 67–73.

    Google Scholar 

  19. Illanes, A., Anjari, M.S., Altamirano, C., and Aguirre, C. (2004), J. Mol. Catal. B Enzymat. 30, 95–103.

    Article  CAS  Google Scholar 

  20. Tang, X.-J., He, G.-Q., Chen, Q.-H., Zhang, X.-Y., and Ali, M.A.M. (2004), Bioresour. Technol. 93, 175–181.

    Article  CAS  Google Scholar 

  21. Prasad, K.K., Mohana, S.V., Raob, R.S., Pati, B.R., and Sarma, P.N. (2005), Biochem. Eng. J. 24, 17–26.

    Article  CAS  Google Scholar 

  22. Levina, L., Forchiassiana, F., and Viale, A. (2005), Process Biochem. 40, 1381–1387.

    Article  CAS  Google Scholar 

  23. Tien, M. and Kirk, T.K. (1988), Methods Enzymol. 161, 238–247.

    CAS  Google Scholar 

  24. Roy, B. and Archibald, F. (1993), Appl. Environ. Microbiol. 59, 1855–1863.

    CAS  Google Scholar 

  25. Couto, S.R., Lorenzo, M.G.M., and Sanroman, M.A. (2002), Process Biochem. 38, 249–255.

    Article  CAS  Google Scholar 

  26. Eggert, C., Temp, U., and Eriksson, K.E. (1996), Appl. Environ. Microbiol. 62, 1151–1158.

    CAS  Google Scholar 

  27. Ander, P. and Messner, K. (1998), Biotechnol. Tech. 12, 191–195.

    Article  CAS  Google Scholar 

  28. Miller, G.E. (1959), Anal. Chem. 31, 426–428.

    Article  CAS  Google Scholar 

  29. Mitchell, D.A., Meien, O.F., Krieger, N., and Dalsenter, F.D.H. (2004), Biochem. Eng. J. 17, 15–26.

    Article  CAS  Google Scholar 

  30. Milagres, A.M.F., Arantes, V., Medeiros, C.L., and Machuca, A. (2002), Enzyme Microb. Technol. 30, 562–565.

    Article  CAS  Google Scholar 

  31. Mäkelä, M., Galkin, S., Hatakka, A., and Lundell, T. (2002), Enzyme Microb. Technol. 30, 542–549.

    Article  Google Scholar 

  32. Urzúa, U., Kersten, P.J., and Vicuña, R. (1998), Appl. Environ. Microbiol. 64, 68–73.

    Google Scholar 

  33. Hofrichter, M., Vares, T., Kalsi, M., et al. (1999), Appl. Environ. Microbiol. 65, 1864–1870.

    CAS  Google Scholar 

  34. Palonen, H., Saloheimo, M., Viikari, L., and Kruus, K. (2003), Enzyme Microb. Technol. 33, 854–862.

    Article  CAS  Google Scholar 

  35. Galhaup, C., Goller, S., Peterbauer, C.K., Strauss, J., and Haltrich, D. (2002), Microbiology 148, 2159–2169.

    CAS  Google Scholar 

  36. Souza, C.G.M., Zilly, A., and Peralta, R.M.J. (2002), Basic Microbiol. 42, 83–90.

    Article  Google Scholar 

  37. Nyanhongo, G.S., Gomes, J., Gubitz, G., Zvauya, R., Read, J.S., and Steiner, W. (2002), Bioresour. Technol. 84, 259–263.

    Article  CAS  Google Scholar 

  38. Jönsson, L.J., Saloheimo, M., and Penttilä, M. (1997), Curr. Genet. 32, 425–430.

    Article  Google Scholar 

  39. Galhaup, C., Wagnera, H., Hinterstoisserb, B., and Haltrich, D. (2002), Enzyme Microb. Technol. 30, 529–536.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. R. B. Xavier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tavares, A.P.M., Coelho, M.A.Z., Agapito, M.S.M. et al. Optimization and modeling of laccase production by Trametes versicolor in a bioreactor using statistical experimental design. Appl Biochem Biotechnol 134, 233–248 (2006). https://doi.org/10.1385/ABAB:134:3:233

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:134:3:233

Index Entries

Navigation