Skip to main content
Log in

Novel core-shell nanoparticles and their application in high-capacity immobilization of enzymes

  • Original Research Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Novel core-shell nanoparticles consisting of poly(methyl methacrylate) (PMMA) cores coated with synthetic polymer and biopolymer (polyethyleneimine, chitosan, and casein) shells were synthesized via direct graft copolymerization of methyl methacry late from hydrophilic polymers in the absence of surfactant. Average hydrodynamic diameters of the nanoparticles ranged from 163 to 263 nm. High-capacity (up to 530 mg/g) immobilizations of enzymes and high-activity retained percentage (E spe) (up to 90%) were achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tanaka, A., Tosa, T., and Kaboyashi, T. (1992), Industrial Application of Immobilized Biocatalysts, Marcel Dekker, New York.

    Google Scholar 

  2. Katchalski-Katzir, E. (1992), Trends Biotechnol. 11, 471–478.

    Article  Google Scholar 

  3. Weetall, H. H. (1993), Appl. Biochem. Biotechnol. 41, 157–188.

    CAS  Google Scholar 

  4. Jin, W. and Brennan, J. D. (2002), Anal. Chim. Acta 461, 1–36.

    Article  CAS  Google Scholar 

  5. Wilcox, D. L., Berg, M., Bernat, T., Kellerman, D., and Cochran, J. K. (1995), Material Research Social Process, MRS Pittsburgh, PA.

    Google Scholar 

  6. Davies, R., Schurr, G. A., Meenan, P., Nelson, R. D., Bergna, H. E., Brevett, C. A. S., and Goldbaum, R. H. (1998), Adv. Mater. 10, 1264–1270.

    Article  CAS  Google Scholar 

  7. Liz-Marzan, L. M., Giersig, M. and Mulvaney, P. (1996), Langmuir 12, 4329–4335.

    Article  CAS  Google Scholar 

  8. Hofman-Caris, C. H. M. (1994) N. J. Chem. 18, 1087–1096.

    CAS  Google Scholar 

  9. Lvov, Y. and Caruso, F. (2001), Anal. Chem. 73, 4212–4217.

    Article  CAS  Google Scholar 

  10. Partch, R., (1997) Materials Synthesis and Characterization, Plenum, New York.

    Google Scholar 

  11. Caruso, F. (2001), Adv. Mater. 13, 11–22.

    Article  CAS  Google Scholar 

  12. Ma, Z. Y., Guan, Y. P., Liu, X. Q., and Liu, H. Z. (2005), Polym. Adv., Technol. 16, 554–558.

    Article  CAS  Google Scholar 

  13. Haupt, B., Neumann, T., Wittemann, A., and Ballauff, M. (2005), Biomacromolecules, 6, 948–955.

    Article  CAS  Google Scholar 

  14. Crumbliss, A. L., Perine, S. C., Stonehuerner, J., Tubergen, K. R., Zhao, J. G., Henkens, R. W., and O'Daly, J. P. (1992), Biotechnol. Bioeng. 40, 483–490.

    Article  CAS  Google Scholar 

  15. Lvov, Y. M., and Möhwald, H. (2000), Protein Architecture: Interfacing Molecular Assemblies and Immobilization Biotechnology, Marcel Dekker, New York.

    Google Scholar 

  16. Hermanson, G. T., Malia, A. K., and Smith, P. K. (1992) Immobilized Affinity Ligand Techniques, Academic, London.

    Google Scholar 

  17. Li, P., Zhu, J. M., Sunintaboon, P., and Harris, F. W. (2002), Langmuir 18, 8641–8646.

    Article  CAS  Google Scholar 

  18. Carlos, R. C. and Amelia, C. R., (1994) Biotechnol. Prog. 10, 220–224.

    Article  Google Scholar 

  19. Denkbas, E. B., Odabasi, M., Kilicay, E., and Özdemir, N. (2002), J. Appl. Poly. Sci. 86, 3035–3039.

    Article  CAS  Google Scholar 

  20. Sinegani, A. A. S., Emtiazi, G., and Shariatmadari, H. (2005), J. Colloid Interf. Sci. 290 39–44.

    Article  CAS  Google Scholar 

  21. Bradford, M. M. (1976), Anal. Biochem. 72, 248–254.

    Article  CAS  Google Scholar 

  22. Miller, G. L. (1959), Anal. Chem. 31, 426–428.

    Article  CAS  Google Scholar 

  23. Sarac, A. S. (1999), Prog. Polym. Sci. 24, 1149–1204.

    Article  CAS  Google Scholar 

  24. Feng, X. D. (1992), Macromol. Chem. Macromol. Symp. 63, 1–18.

    CAS  Google Scholar 

  25. Schneider, M., Pith, T., and Lambla, M., (1996), J. Appl. Polym. Sci. 62, 273–290.

    Article  CAS  Google Scholar 

  26. Baker, J. O., Ehrman, C. I., Adney, W. S., Thomas, S. R., and Himmel, M. E. (1998) Appl. Biochem. Biotechnol. 70, 395–403.

    Article  Google Scholar 

  27. Baker, J. O., King, M. R., Adney, W. S., et al. (2000), Appl. Biochem. Biotechnol. 84, 217–223.

    Article  Google Scholar 

  28. Xu, B. Z., Hellman, U., Ersson, B., and Janson, J. C. (2000), Eur. J. Biochem. 267, 4970–4977.

    Article  CAS  Google Scholar 

  29. Hamzehi, E., Pflug, W., and Pflanzenernaehr, Z. (1981), Bodenkd 144, 505–513.

    Article  CAS  Google Scholar 

  30. Fan, J., Lei, J., Wang, L. M., Yu, C. Z., Tu, B., and Zhao, D. Y. (2003), Chem. Commun. 17, 2140–2143.

    Article  CAS  Google Scholar 

  31. Wang, P., Sergeeva, M. S., Lim, L., and Dordick, J. S. (1997), Nat. Biotechnol. 15, 789–793.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, X., Huang, J., Fai Leung, M. et al. Novel core-shell nanoparticles and their application in high-capacity immobilization of enzymes. Appl Biochem Biotechnol 135, 229–239 (2006). https://doi.org/10.1385/ABAB:135:3:229

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:135:3:229

Index Entries

Navigation